
Notes for Lecture 36 Fri, 12/1/2023

Further entries in the Laplace transform table

Finally, we expand our table of Laplace transforms to the following:

f(t) F (s)
f 0(t) sF (s)¡ f(0)
f 00(t) s2F (s)¡ sf(0)¡ f 0(0)
eat

1

s¡ a
cos(!t) s

s2+!2

sin(!t) !

s2+!2

tn
n!

sn+1

eatf(t) F (s¡ a)
tf(t) ¡F 0(s)

ua(t)f(t¡ a) e¡asF (s)

Example 152. (new entry) We add the following to our table of Laplace transforms:

L(eatf(t))=
Z
0

1
e¡steatf(t)dt=

Z
0

1
e¡(s¡a)tf(t)dt=F (s¡ a)

Example 153. (new entry) We also add the following to our table of Laplace transforms:

L(tf(t))=
Z
0

1
e¡sttf(t)dt=

Z
0

1
¡ d
ds
e¡stf(t)dt=¡ d

ds

Z
0

1
e¡stf(t)dt=¡F 0(s)

In particular,

L(t) = L(t � 1)=¡ d
ds

1
s
=
1

s2

L(t2) = ¡ d
ds

1

s2
=
2

s3
���

L(tn) =
n!

sn+1
:

Example 154. Determine the Laplace transform L((t¡ 3)e2t).
Solution. L((t¡ 3)e2t)=L(te2t)¡ 3L(e2t)= 1

(s¡ 2)2 ¡
3

s¡ 2

Here, we combined L(tf(t))=¡F 0(s) with L(e2t)= 1

s¡ 2 to get L(te2t)=¡ d

ds

1

s¡ 2 =
1

(s¡ 2)2 .

Alternative. Combine L(t¡3)= 1

s2
¡ 3

s
and L(f(t)e2t)=F (s¡2) to again get L((t¡3)e2t)= 1

(s¡ 2)2¡
3

s¡ 2 .

Example 155. Determine the inverse Laplace transform L¡1
�

1

(s¡ 3)2

�
.

Solution. L¡1
�

1

(s¡ 3)2

�
= e3tL¡1

�
1

s2

�
= te3t.

Example 156. Determine the inverse Laplace transform L¡1
�

e¡2s

(s¡ 3)2

�
.

Solution. It follows from the previous example that L¡1
�

e¡2s

(s¡ 3)2

�
=u2(t)(t¡ 2) e3(t¡2).
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Example 157. (bonus) Solve the IVP y 00¡ 3y 0+2y= et, y(0)= 0, y 0(0)= 1.
Solution. (old style, outline) The characteristic polynomial D2 ¡ 3D + 2 = (D ¡ 1)(D ¡ 2). Since there is
duplication, we have to look for a particular solution of the form yp=Ate

t. To determine A, we need to plug into
the DE (we find A=¡1). Then, the general solution is y(t)=Atet+C1et+C2e2t, and the initial conditions
determine C1 and C2 (we find C1=¡2 and C2=2).

Solution. (Laplace style)

L(y 00(t))¡ 3L(y 0(t))+ 2L(y(t)) = L(et)

s2Y (s)¡ sy(0)¡ y 0(0)¡ 3(sY (s)¡ y(0))+ 2Y (s) =
1

s¡ 1
(s2¡ 3s+2)Y (s) = 1+

1
s¡ 1 =

s
s¡ 1

Y (s) =
s

(s¡ 1)2(s¡ 2)

To find y(t), we again use partial fractions. We find Y (s)= A

(s¡ 1)2 +
B

s¡ 1 +
C

s¡ 2 with coefficients (why?!)

C =
s

(s¡ 1)2

��������
s=2

=2; A=
s

s¡ 2

��������
s=1

=¡1; B=
d
ds

s
s¡ 2

��������
s=1

=
¡2

(s¡ 2)2

��������
s=1

=¡2:

Finally, y(t)=L¡1
�

A

(s¡ 1)2 +
B

s¡ 1 +
C

s¡ 2

�
=Atet+Bet+Ce2t=¡(t+2)et+2e2t.

More details on the partial fractions with a repeated root. Above we computed A;B;C so that

s

(s¡ 1)2(s¡ 2) =
A

(s¡ 1)2 +
B

s¡ 1 +
C

s¡ 2 :

� We can compute C as before by multiplying both sides with s¡ 2 and then setting s=2.

� Similarly, we can compute A by multiplying both sides with (s¡ 1)2 and then setting s=1.

� To compute B, multiply both sides by (s¡ 1)2 (as for A) to get

s
(s¡ 2) =A+B(s¡ 1)+

C(s¡ 1)2
s¡ 2 :

Now, we take the derivative on both sides (so that A goes away) to get

¡2
(s¡ 2)2 =B+

C(2(s¡ 1)(s¡ 2)¡ (s¡ 1)2)
(s¡ 2)2

and we find B by setting s=1.
Comment. In fact, the term involving C had to drop out when plugging in s = 1, even after taking a
derivative. That's because, after multiplying with (s¡ 1)2, that term has a double root at s=1. When
taking a derivative, it therefore still has a (single) root at s=1.
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Solving systems of DEs using Laplace transforms

We solved the following system in Example 123 using elimination and our method for solving linear
DEs with constant coefficients based on characteristic roots.

Example 158. (extra) Solve the system y1
0 =5y1+4y2, y20 =8y1+ y2, y1(0)=0, y2(0)= 1.

Solution. (using Laplace transforms) y10 =5y1+4y2 transforms into sY1¡ y1(0)
=0

=5Y1+4Y2.

Likewise, y2
0 =8y1+ y2 transforms into sY2¡ y2(0)

=1

=8Y1+Y2.

The transformed equations are regular equations that we can solve for Y1 and Y2.

For instance, by the first equation, Y2=
1

4
(s¡ 5)Y1.

Used in the second equation, we get ¡8Y1+
1

4
(s¡ 1)(s¡ 5)Y1

=
1
4
(s2¡6s¡27)= 1

4
(s+3)(s¡9)

=1 so that Y1=
4

(s+3)(s¡ 9) .

Hence, the system is solved by Y1=
4

(s+3)(s¡ 9) and Y2=
1

4
(s¡ 5)Y1= s¡ 5

(s+3)(s¡ 9) .

As a final step, we need to take the inverse Laplace transform to get y1(t)=L¡1(Y1(s)) and y2(t)=L¡1(Y2(s)).

Using partial fractions, Y1(s)=
4

(s+3)(s¡ 9) =¡
1

3
� 1

s+3
+
1

3
� 1

s¡ 9 so that y1(t)=¡1

3
e¡3t+

1

3
e9t.

Similarly, Y2(s)=
s¡ 5

(s+3)(s¡ 9) =
2

3
� 1

s+3
+
1

3
� 1

s¡ 9 so that y2(t)=
2

3
e¡3t+

1

3
e9t.

Solution. (old solution, for comparison) Since y2=
1

4
y1
0 ¡ 5

4
y1 (from the first eq.), we have y2

0 =
1

4
y1
00¡ 5

4
y1
0 .

Using these in the second equation, we get 1
4
y1
00¡ 5

4
y1
0 =8y1+

1

4
y1
0 ¡ 5

4
y1.

Simplified, this is y1
00¡ 6y10 ¡ 27y1=0.

This is a homogeneous linear DE with constant coefficients. The characteristic roots are ¡3; 9.
We therefore obtain y1=C1e¡3t+C2e9t as the general solution.

Thus, y2=
1

4
y1
0 ¡ 5

4
y1=

1

4
(¡3C1e¡3t+9C2e

9t)¡ 5

4
(C1e

¡3t+C2e9t)=¡2C1e¡3t+C2e9t.
We determine the (unique) values of C1 and C2 using the initial conditions:

y1(0)=C1+C2=
!
0

y2(0)=¡2C1+C2=
!
1

We solve these two equations and find C1=¡1

3
and C2=

1

3
.

The unique solution to the IVP therefore is y1(t)=¡1

3
e¡3t+

1

3
e9t and y2(t)=

2

3
e¡3t+

1

3
e9t.
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