Notes for Lecture 36 Fri, 12/1/2023

| Further entries in the Laplace transform table |

Finally, we expand our table of Laplace transforms to the following:

f(t) F(s)
f'() sF(s)— f(0)
fr(t)  |sF(s) - S{(O) — /'(0)
cos(wt) %
sin(wt) ﬁ
¢n -
et f(t) F(s—a)
tf(t) —F'(s)
ua(t) f(t —a) e "F(s)

Example 152. (new entry) We add the following to our table of Laplace transforms:

clets )= [

0

" emsteat f(1)dt = / TGOt () dt = F(s — a)

0

Example 153. (new entry) We also add the following to our table of Laplace transforms:

LEF() = / et F(£)dt = / ~dstpyar= - [T emstpyar = —Fr(s)
0 o ds ds /g
In particular,
L) = L(t-l):—%%:é
d 1 2
L) = —32==3
|
L@ =
Example 154. Determine the Laplace transform L£((t — 3)e??).
Solution. L((t —3)e?") = L(te*) —3L(e*) = _12)2 -

Here, we combined L£(t f(t)) = —F'(s) with £(e?!) =

Alternative. Combine L(t — 3) :% —% and L(f(t)e?") = F(s —2) to again get L((t — 3)e?!) :ﬁ —

d 1 1
to get L(te?!) = B P Rl pap o2

1
s —2

3

—
Example 155. Determine the inverse Laplace transform £_1< G _13)2).
Solution. £~ = ) =e¥ L7 (&) = te,
Example 156. Determine the inverse Laplace transform E‘%%).
Solution. It follows from the previous example that E_l((s%z;y) =wua(t)(t — 2) e3(t=2),
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Example 157. (bonus) Solve the IVP 3" — 3y’ + 2y =¢', y(0)=0, y'(0)=1.

Solution. (old style, outline) The characteristic polynomial D? — 3D + 2 = (D — 1)(D — 2). Since there is
duplication, we have to look for a particular solution of the form y, = Ate’. To determine A, we need to plug into
the DE (we find A= —1). Then, the general solution is y(t) = Ate’ + Cyet + Cae??, and the initial conditions
determine C7 and Cy (we find C1 = —2 and Co =2).

Solution. (Laplace style)

L(y" (1) =3L(y' (1)) +2L(y(t)) = L(e")

1
s?Y (s) = sy(0) — y'(0) = 3(sY(s) = 5(0)) +2Y(s) = —

1 s

2_ — —

(s*—3s+2)Y(s) 1+s—1 1
s
Y =
N
To find y(¢), we again use partial fractions. We find Y'(s) = G fl)Q + < ? T+ ?2 with coefficients (why?!)
d s —2
c=—2"1| =2 A=_2 -1, p=2_s5 | _—_—2_ o,
(571)2 s=2 , 5—2 s=1 , ds s —2 s=1 (872)2 s=1
A B C

Finally, y(t) = £} ( 2+ -2 +

):Atet—&—Bet—i—Cth: —(t+2)et + 22
s—1 s—2

More details on the partial fractions with a repeated root. Above we computed A, B, C so that

s A B C
(8—1)2(5—2)7(8—1)2—’_871—’_872.

e We can compute C' as before by multiplying both sides with s — 2 and then setting s = 2.
e Similarly, we can compute A by multiplying both sides with (s — 1)2 and then setting s = 1.

e To compute B, multiply both sides by (s — 1)? (as for A) to get

ﬁ:A—FB(s—l)—i—C(:f_;)Q.

Now, we take the derivative on both sides (so that A goes away) to get

-2 C(2(s—1)(s —2) — (s — 1)?)
CEPE (s-2)?

and we find B by setting s =1.

Comment. In fact, the term involving C' had to drop out when plugging in s = 1, even after taking a
derivative. That's because, after multiplying with (s — 1)2, that term has a double root at s=1. When
taking a derivative, it therefore still has a (single) root at s =1.
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 Solving systems of DEs using Laplace transforms |

We solved the following system in Example 123 using elimination and our method for solving linear
DEs with constant coefficients based on characteristic roots.

Example 158. (extra) Solve the system yi =5y + 4ys, y5=8y1 + y2, y1(0) =0, y2(0) = 1.
Solution. (using Laplace transforms) yi =5y + 4ys transforms into sY; —y1(0) =5Y] +4Y5.

=0
Likewise, y5 = 8y1 + y2 transforms into s Y2 — y2(0) =8Y] + Ya.
=1

The transformed equations are regular equations that we can solve for Y] and Y5.

For instance, by the first equation, Y5 = %(s —5)Y7.

Used in the second equation, we get ‘—8Y1 + %(8 —1)(s— 5)Y1‘ =1 so that Y1 = W‘M.
=1(s2—65—27)=2(s+3)(s—9)
. o 4 _ 1 _ s—5

Hence, the system is solved by Y7 = (ereTeyry and Y5 = Z(S -5V = [ECFIG=k
As a final step, we need to take the inverse Laplace transform to get y1(t) = £~ 1(Yi(s)) and yo(t) = L1 (Ya(s)).

. . . 4 11 11 1 1
Using partial fractions, Yi(s) = e -9 - 3333 t3 i that yi(t) = —e 3t 4 gegt.

- -5 2 1 11 2 _ 1

Similarly, Ya(s) = G +83)(S —5 =3 513 t3 59 %° that ya(t) = e 3t 4 Eegt.

Solution. (old solution, for comparison) Since ygzéy{ — %yl (from the first eq.), we have 35 :%y” — %y{.

Using these in the second equation, we get %y{/ — %y{ =8y + iy{ — %yl.

Simplified, this is y{’ — 6y] — 27y1 = 0.

This is a homogeneous linear DE with constant coefficients. The characteristic roots are —3, 9.
We therefore obtain y; = Cre 3t + Cae”? as the general solution.

Thus, yo = %y{ — %yl = %(—36’167375 +9C05e%%) — %(Cle*?’75 + 02e%%) = —2C1e 73t 4 Coet.
We determine the (unique) values of C'; and C using the initial conditions:

y1(0)=C1 +Cy20

yo(0) = —2C1 + Co= 1

We solve these two equations and find C; = —% and Cy = %
The unique solution to the IVP therefore is y1(t) = —%6*3’5 + %egt and yo(t) = %e*:)’t —}-%egt.
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