
Notes for Lecture 31 Fri, 11/10/2023

Excursion: Euler's identity

Let's revisit Euler's identity from Theorem 79.

Theorem 125. (Euler's identity) eix= cos(x)+ i sin(x)

Proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] �

On lots of T-shirts. In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects the five
fundamental constants).

Example 126. Where do trig identities like sin(2x)=2cos(x)sin(x) or sin2(x)= 1¡ cos(2x)
2

(and
infinitely many others!) come from?

Short answer: they all come from the simple exponential law ex+y= exey.
Let us illustrate this in the simple case (ex)2= e2x. Observe that

e2ix = cos(2x)+ i sin(2x)
eixeix = [cos(x)+ i sin(x)]2= cos2(x)¡ sin2(x)+ 2i cos(x)sin(x):

Comparing imaginary parts (the �stuff with an i�), we conclude that sin(2x)= 2cos(x)sin(x).
Likewise, comparing real parts, we read off cos(2x)= cos2(x)¡ sin2(x).

(Use cos2(x)+ sin2(x)= 1 to derive sin2(x)= 1¡ cos(2x)
2

from the last equation.)

Challenge. Can you find a triple-angle trig identity for cos(3x) and sin(3x) using (ex)3= e3x?

Or, use ei(x+y)= eixeiy to derive cos(x+ y)= cos(x)cos(y)¡ sin(x)sin(y) and sin(x+ y)= :::

Realize that the complex number ei�=cos(�)+ i sin(�) corresponds to the point (cos(�); sin(�)).
These are precisely the points on the unit circle!

Recall that a point (x; y) can be represented using polar coordinates (r; �), where r is the
distance to the origin and � is the angle with the x-axis.

Then, x= r cos� and y= r sin�.

Every complex number z can be written in polar form as z= rei�, with r= jz j.

Why? By comparing with the usual polar coordinates (x= r cos� and y= r sin�), we can write

z=x+ iy= r cos�+ ir sin�= rei�:

In the final step, we used Euler's identity.
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