Notes for Lecture 14 Mon, 9/25/2023

\ Acceleration—velocity models

To model a falling object, we let () be its height at time ¢.
Then physics has names for y’(t) and y”/(t): these are the velocity and the acceleration.

Physics tells us that objects fall due to gravity (and that it makes already-falling objects fall faster;
in other words, gravity accelerates falling objects). Physicists have measured that, on earth, the
the gravitational acceleration is g~ 9.81m/s?

If we only take earth's gravitation into account, then the fall is therefore modeled by
y'(t)=—g.

Example 52. A ball is dropped from a 100m tall building. How long until it reaches the ground?
What is the speed when it hits the ground?

Solution. Let y(t) be the height (in meters) at which the ball is at time ¢ (in seconds).

As above, physics tells us that an object falling due to gravity (and ignoring everything else) satisfies the DE
y" = —g where g~ 9.81. We further know the initial values y(0) =100, y’(0) =0.

Substituting v =1y’ in the DE, we get v/ = —g. This DE is solved by v(t) = —gt + C.
Hence, y(t) = [v(t)dt = —2gt?+ Ct+ D.

The initial conditions y(0) =100, y’(0) =0 tell us that D =100 and C =0.

Thus y(t) = —2 gt> + 100,

The ball reaches the ground when y(t) = —%th + 100 =0, that is after t = /200/ g =~ 4.52 seconds.
The speed then is |y/(4.52)| ~44.3m/s.

For many applications, one needs to take air resistance into account.

This is actually less well understood than one might think, and the physics quickly becomes rather complicated.
Typically, air resistance is somewhere in between the following two cases:

e Under certain assumptions, physics suggests that air resistance is proportional to the square
of the velocity.
Comment. A simplistic way to think about this is to imagine the falling object to bump into (air)

particles; if the object falls twice as fast, then the momentum of the particles it bumps into is twice as
large and it bumps into twice as many of them.

e In other cases such as “relatively slowly” falling objects, one might empirically observe that
air resistance is proportional to the velocity itself.
Comment. One might imagine that, at slow speed, the falling object doesn’t exactly bump into particles

but instead just gently pushes them aside; so that at twice the speed it only needs to gently push twice
as often.
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Example 53. When modeling the (slow) fall of a parachute, physics suggests that the air resis-
tance is roughly proportional to velocity. If y(¢) is the parachute's height at time ¢, then the
corresponding DE is y” = —g — py’ where p >0 is a constant.

Comment. Note that —py’ > 0 because y’ < 0. Thus, as intended, air resistance is acting in the opposite
direction as gravity and slowing down the fall.

Determine the general solution of the DE.

Solution. Substituting v =y’, the DE becomes v’ 4 pv = —g.
This is a linear DE. To solve it, we determine that the integrating factor is exp(f pdt) =eft.

Multiplying the DE with that factor and integrating, we obtain e”'v = I —gePtdt = —%ept +C.

Hence, v(t) = —% +Ce Pt

Correspondingly, the general solution of the DE is y(t) = [v(t)dt = —%t — % e Pt 4+ D.

Comment. Note that lim v(t) = —9In other words, the terminal velocity is v.o = —%
t— o0 14

This is an interesting mathematical consequence of the DE. (And important for the idea behind a parachute!)
Note that, if we know that there is a terminal speed, then we can actually determine its value v, from the DE
without solving it by setting v/ = 0 (because, once the terminal speed is reached, the velocity does not change
anymore) in v’ + pv = —g. This gives us pvo, = —g and, hence, voo = —g/ p as above.
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