
Notes for Lecture 3 Mon, 8/28/2023

Example 10. (warmup) Consider the DE y 00= y 0+6y.

(a) Is y(x)= e2x a solution?

(b) Is y(x)= e3x a solution?

Solution.

(a) y 0=2e2x and y 00=4e2x.
Since y 0+6y=8e2x is different from y 00=4e2x, we conclude that y(x)= e2x is not a solution.

(b) y 0=3e3x and y 00=9e3x.
Since y 0+6y=9e3x is equal to y 00=9e3x, we conclude that y(x)= e3x is a solution of the DE.

Example 11. (cont'd) Consider the DE y 00= y 0+6y. For which r is erx a solution?

Solution. If y(x)= erx, then y 0(x)= rerx and y00(x)= r2 erx.
Plugging y(x)= erx into the DE, we get r2erx= rerx+6erx which simplifies to r2= r+6.
This has the two solutions r=¡2, r=3. Hence e¡2x and e3x are solutions of the DE.

In fact, we check that Ae¡2x+Be3x is a two-parameter family of solutions to the DE.
Important comment. It is no coincidence that the order of the DE is 2, whereas the previous example has order
1. In general, we expect a DE of order r to have a solution with r parameters.

Example 12. (extra)
Comment. In this example, we use x(t) instead of y(x) for the function described by the differential equation.
In general, of course, any choice of variable names is possible. If we write something like x0 or y 0 it needs to be
clear from the context with respect to which variable that derivative is meant (such as x0= d

dt
x(t)).

(a) Verify that x(t)= 1

c¡ kt is a one-parameter family of solutions to the DE dx

dt
= kx2.

(b) Solve the IVP dx

dt
= kx2, x(0)= 2.

(c) Solve the IVP dx

dt
= kx2, x(0)= 0.

Solution.

(a) We compute that dx
dt
=¡ 1

(c¡ kt)2
� (¡k)= k

(c¡ kt)2 .

On the other hand, kx2= k
�

1

c¡ kt

�
2
=

k

(c¡ kt)2 as well. Thus, indeed, dx
dt
= kx2.

(b) We start with x(t) = 1

c¡ kt (which we know solves the DE for any value of c) and seek to choose c so
that x(0)=2.

Since x(0)=
h

1

c¡ kt

i
t=0

=
1

c
=
!
2, we find c= 1

2
.

Hence, the IVP has the (unique) solution x(t)= 1

1/2¡ kt .

(c) Proceeding as in the previous part, we now arrive at the impossible equation 1

c
=
!
0.

However, this suggests that we should consider taking c!1 in x(t)= 1

c¡ kt , which results in x(t)= 0.

Indeed, it is easy to verify (make sure you know what this entails!) that x(t)= 0 solves the IVP.
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Slope fields, or sketching solutions to DEs

Example 13. Consider the DE y 0=¡x/y.
Let's pick a point, say, (1;2). If a solution y(x) is passing through
that point, then its slope has to be y 0=¡1/2. We therefore draw
a small line through the point (1;2) with slope¡1/2. Continuing
in this fashion for several other points, we obtain the slope field
on the right.

With just a little bit of imagination, we can now anticipate the
solutions to look like (half)circles around the origin. Let us check

whether y(x)= r2¡ x2
p

might indeed be a solution!

y 0(x) =
1

2

¡2x
r2¡ x2

p =¡x/y(x). So, yes, we actually found solutions!
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Solving DEs: Separation of variables

Example 14. Solve the DE y 0=¡x

y
.

Solution. Rewrite the DE as dy

dx
=¡x

y
.

Separate the variables to get ydy=¡xdx (in particular, we are multiplying both sides by dx).
Integrating both sides, we get

R
ydy=

R
¡xdx.

Computing both integrals results in 1

2
y2=¡1

2
x2+C (we combine the two constants of integration into one).

Hence x2+ y2=D (with D=2C).
This is an implicit form of the solutions to the DE. We can make it explicit by solving for y. Doing so, we find
y(x)=� D¡ x2

p
(choosing+ gives us the upper half of a circle, while the negative sign gives us the lower half).

Comment. The step above where we break dy

dx
apart and then integrate may sound sketchy!

However, keep in mind that, after we find a solution y(x), even if by sketchy means, we can (and should!) verify
that y(x) is indeed a solution by plugging into the DE. We actually already did that in the previous example!
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