(Bonus) Quiz #1

Please print your name:

Problem 1. (2+4 points) Consider the finite field $GF(2^6)$ constructed using $x^6 + x + 1$.

(a) The product of x⁵ + x⁴ and x⁵ in GF(2⁶) is
(b) The inverse of x³ in GF(2⁶) is

Use the extra sheet for your computations. Make sure to check your answer! You have plenty of time.

Solution.

(a) $(x^5 + x^4)x^5 = x^{10} + x^9$

By long division modulo 2, we find that $x^{10} + x^9 = (x^4 + x^3)(x^6 + x + 1) + (x^5 + x^3)$. Hence, $(x^5 + x^4)x^5 = x^5 + x^3$ in GF(2⁶).

(b) We use the extended Euclidean algorithm, and always reduce modulo 2:

$$\begin{array}{c} \hline x^6 + x + 1 \\ \hline x^3 \end{array} \equiv \begin{array}{c} x^3 \cdot \boxed{x^3} + \boxed{x + 1} \\ \hline x^3 \end{array} \equiv \begin{array}{c} x^2 + x + 1 \end{pmatrix} \cdot \boxed{x + 1} + \boxed{1} \end{array}$$

Backtracking through this, we find that Bézout's identity takes the form

$$1 \equiv 1 \cdot \boxed{x^3} + (x^2 + x + 1) \cdot \underbrace{x + 1}_{\equiv \boxed{x^6 + x + 1} + x^3 \cdot \boxed{x^3}}_{\equiv (x^5 + x^4 + x^3 + 1) \cdot \boxed{x^3} + (x^2 + x + 1) \cdot \boxed{x^6 + x + 1}}$$

Hence, $(x^3)^{-1} = x^5 + x^4 + x^3 + 1$ in $GF(2^6)$.

Problem 2. (2 points) The primitive roots modulo 14 are

Again, use the extra sheet for your computations.

Solution. Since $\phi(14) = 6$, the possible orders of residues modulo 14 are 1, 2, 3, 6. Residues with order 6 are primitive roots. We will find one primitive root (by trying 3, 5, ...) and use that to compute all primitive roots.

 $3^2 \not\equiv 1, 3^3 \equiv -1 \not\equiv 1 \pmod{14}$, so that 3 (has order 6 and hence) is a primitive root.

Every other invertible residue is of the form 3^x , and the order of $3^x \pmod{14}$ is $\frac{6}{\gcd(6, x)}$.

Since gcd(6, x) = 1 for x = 1, 5, the primitive roots modulo 14 are $3^1 = 3$ and $3^5 \equiv 5$.

1

Problem 3. (6 points) Fill in the blanks.

(a)	DES has a block size of	ł	bits, a key size of		bits and consists of		rounds.
(b)	Suppose we are using 3D	ES with key	$k = (k_1, k_2, k_3), w$	there each k_i	$_i$ is an independent DE	ES key.	
	Then m is encrypted to a	=			. The effective key siz	e is	bits.
(c)	AES-128 has a block size	of	bits, a key size	of	bits and consists o	f	rounds.
(d)	AES-256 has a block size	of	bits, a key size	of	bits and consists o	f	rounds.
(e)	The four layers of AES a	re					
(f)	If $x \pmod{N}$ has (multiplication)	blicative) ord	er k , then x^{10} has	s order			

Solution.

- (a) DES has a block size of 64 bits, a key size of 56 bits and consists of 16 rounds.
- (b) m is encrypted to $c = E_{k_3}(D_{k_2}(E_{k_1}(m))).$

The effective key size is 112 bits (because of the meet-in-the-middle attack).

- (c) AES-128 has a block size of 128 bits, a key size of 128 bits and consists of 10 rounds.
- (d) AES-256 has a block size of 128 bits, a key size of 256 bits and consists of 14 rounds.
- (e) The four layers of AES are: ByteSub, ShiftRow, MixCol, AddRoundKey.
- (f) If $x \pmod{N}$ has (multiplicative) order k, then x^{10} has order $k/\gcd(k, 10)$.