
Sketch of Lecture 38 Wed, 4/24/2019

Elliptic curve cryptography

The idea of Di�e�Hellman (used, for instance, in DH key exchange, ElGamal or DSA) can be
carried over to algebraic structures di�erent from multiplication modulo p.
Recall that the key idea is, starting from individual secrets x; y, to share gx, gy modulo p in order to arrive
at the joint secret gxy (mod p). That's using multiplication modulo p.

One other such algebraic structure, for which the analog of the discrete logarithm problem is
believed to be di�cult, is elliptic curves.
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography

Comment. The main reason (apart from, say, diversi�cation) is that this leads to a signi�cant saving in
key size and speed. Whereas, in practice, about 2048bit primes are needed for Di�e�Hellman, comparable
security using elliptic curves is believed to only require about 256bits.

For a beautiful introduction by Dan Boneh, check out the presentation:
https://www.youtube.com/watch?v=4M8_Oo7lpiA

Example 211. The elliptic curve E, described by

y2= x3¡x+9;

has the obvious points (0;�3); (�1;�3).
Sage] E = EllipticCurve([-1,9])

Sage] E.plot() + E(1,3).plot(pointsize=50, rgbcolor=(1,0,0))

-2 -1 1 2 3 4

-10

-5

5

10

Sage] -E(1,3)

(1:¡3: 1)

Sage] E(0,3) + E(1,3)

(¡1:¡3: 1)

Sage] E(0,-3) + E(1,3)

(35:¡207: 1)

Sage] E.rank()

2

Armin Straub
straub@southalabama.edu

85



Given a point P =(x; y) on E, we de�ne ¡P =(x;¡y) which is another point on E.
Let us introduce an operation � in the following geometric fashion: given two points P ;Q, the
line through these two points intersects the curve in a third point R.

We then de�ne P �Q=¡R.

We remark that P � (¡P ) is the point O �at 1�. That's the neutral (zero) element for �.
How does one de�ne P �P? (Tangent line!)

Remarkably, the �addition� P �Q is associative. (This is not obvious from the de�nition.)
Using �, we learn about many new points: for instance, (0;¡3)� (1; 3)= (35;¡207)
Easier to verify (but not producing anything new) is (0; 3)� (1; 3)= (¡1;¡3).

For cryptographic purposes, elliptic curves are considered modulo a (large) prime p.

Example 212. Let us consider y2= x3¡ x+9 (the elliptic curve from the previous example)
modulo 7. List all points on that curve.
Solution. Note that, because we are working modulo 7, there are only 7 possible values for each of x and
y. Hence, we can just go through all 72= 49 possible points (x; y) to �nd all points on the curve.
Doing so, we �nd 9 points: O; (0;�3); (�1;�3); (2;�1).
[Recall that O is the special point (1;1) which serves as the neutral element with respect to �.]
Comment. A theorem of Hasse�Weil says that the number of points on an elliptic curve modulo p is always
close to p. Moreover, we can compute the exact number of points very e�ciently.

By taking everything modulo 7, we still have the previously introduced addition rule �.
For instance. (0;¡3)� (1; 3)= (35;¡207)� (0; 3)

Sage] E7 = EllipticCurve(GF(7), [-1,9])

Sage] E7.points()

[(0: 1: 0); (0: 3: 1); (0: 4: 1); (1: 3: 1); (1: 4: 1); (2: 1: 1); (2: 6: 1); (6: 3: 1); (6: 4: 1)]

Sage] E7(0,-3) + E7(1,3)

(0: 3: 1)

Sage] E7(1,-3) + E7(0,-3)

(6: 3: 1)

Multiples of a point are simply denoted with nP . For instance, 3P =P �P �P .

We then have a version of the discrete logarithm problem for elliptic curves:

(discrete logarithm) Given P ; xP on an elliptic curve, determine x.

(computational Di�e�Hellman) Given P ; xP ; yP on an elliptic curve, determine (xy)P .

Comment. Interestingly, it appears that the computational Di�e�Hellman problem (CDH) is more di�cult
for elliptic curves modulo p than for regular multiplication modulo p. Indeed, suppose that p is an n-digit
prime. Then the best known algorithms for regular CDH modulo p has runtime 2O( n3

p
), whereas the best

algorithm for the elliptic curve CDH modulo p has runtime p
p � 2n/2=2O(n).

As a consequence, it is believed that a smaller prime p can be used to achieve the same level of security when
using elliptic curve Di�e�Hellman (ECDH). In practice 256bit primes are used, which is believed to provide
security comparable to 2048bit regular Di�e�Hellman (DH); this makes ECDH about ten times faster in
practice than DH.
Comment. On the other hand, due to that reduced bit size, quantum computing attacks on elliptic curve
cryptography, if they become available, would be more feasible compared to attacks on ElGamal/RSA.

Armin Straub
straub@southalabama.edu

86



Comment. Apparently, more than 90% of webservers use one speci�c, NIST speci�ed, elliptic curve: P-256:

y2=x2¡3x+41058363725152142129326129780047268409114441015993725554835256314039467401291;

taken modulo p=2256¡ 2224+2192+296¡1 (the fact that p�2256 makes the computations on the elliptic
curve much faster in practice). The initial point P =(x; y) on the curve has huge coordinates as well.
Using this single curve is sometimes considered to be problematic, especially following the concerns that the
NSA may have implemented a backdoor into Dual_EC_DRBG, which was a NIST standard 2006�2014.
https://en.wikipedia.org/wiki/Dual_EC_DRBG

A popular alternative is the curve Curve25519. Besides some desirable theoretical advantages, its parameters
are small and therefore not of similarly mysterious origin as the ones for P-256:

y2=x3+ 486662x2+x; p=2255¡ 19; x=9:

[Instead of points with (x; y) coordinates, one can actually work with just the x-coordinates for an additional
speed-up.]
https://en.wikipedia.org/wiki/Curve25519

Sage] E = EllipticCurve(GF(2^255-19), [0,486662,0,1,0])

Sage] E

y2=x3+ 486662x2+x

Sage] E.order()

57896044618658097711785492504343953926856930875039260848015607506283634007912

Sage] log(E.order(),2).n()

255.000000000000

Sage] P = E.lift_x(9)

Sage] P

(9: 14781619447589544791020593568409986887264606134616475288964881837755586237401: 1)

Sage] 100*P

(44032819295671302737126221960004779200206561247519912509082330344845040669336: 4927003\
8226210525340151214444327294350884211061153958845837287101994892076605: 1)

Sage] P.order()

7237005577332262213973186563042994240857116359379907606001950938285454250989

Sage] log(P.order(),2).n()

252.000000000000

Sage] E.order() / P.order()

8

Sage] 5*(20*P) == 20*(5*P)

1

On the other hand, it should be pointed out that it is not an easy task to �randomly generate� cryptographically
secure elliptic curves plus suitable base point. That's the reason pre-selected elliptic curves are of importance.
http://blog.bjrn.se/2015/07/lets-construct-elliptic-curve.html

Armin Straub
straub@southalabama.edu

87


