
Sketch of Lecture 36 Fri, 4/19/2019

Example 207. (chip based credit cards) Modern chip based credit cards use digitial signa-
tures to authenticate a payment.

How? The card carries a public key, which is signed by the bank, so that a merchant can verify the public
key. The card then signs a challenge from the merchant for authentication. The private key used for that is
not even known to the bank.
Note that all of this can be done o�ine, without needing to contact the bank during the transaction.
https://en.wikipedia.org/wiki/EMV

There's an interesting and curious story made possible by the fact that, around 2000, banks in France used
320 bit RSA (chosen in the 80s and then not �xed despite expert advice) for signing the card's public key:
https://en.wikipedia.org/wiki/Serge_Humpich

Comment. For contrast, the magnetic stripe just contains the card information such as card number.
Comment. This also leads to interesting questions like: can we embed a private key in a chip (or code) in
such a way that an adversary, with full access to the circuit (or code), still cannot extract the key?
https://en.wikipedia.org/wiki/Obfuscation#White_box_cryptography

A digital signature is like a hash, which can only be created by a single entity (using a private
key) but which can be veri�ed by anyone (using a public key).

As one might expect, a symmetric version of this idea is also common:

Example 208. (MAC) A message authentication code, also known as a keyed hash, uses
a private key k to compute a hash for a message.

Like a hash, a MAC provides integrity. Further, like a digital signature, it provides authenticity because only
parties knowing the private key are able to compute the correct hash.
Comment. On the other hand, a MAC does not o�er non-repudiation because several parties know the
private key (whether non-repudiation is desirable or undesirable depends on the application). Hence, it cannot
be proven to a third party who among those computed the MAC (and, in any case, such a discussion would
make it necessary to reveal the private key, which is usually unacceptable).
From hash to MAC. If you have a cryptographic hash function H, you can simply produce a MAC Mk(x)
(usually referred to as a HMAC) as follows:

Mk(x)=H(k; x)

This seems to work �ne for instance for SHA-3. On the other hand, this does not appear quite as secure for
certain other common hashes. Instead, it is common to use Mk(x)=H(k;H(k; x)). For more details, see:
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

From ciphers to MAC. Similarly, we can also use ciphers to create a MAC. See, for instance:
https://en.wikipedia.org/wiki/CBC-MAC

Armin Straub
straub@southalabama.edu

82



Six of the seven Millenium Prize Problems (including the Riemann Hypothesis), for which the
Clay Mathematics Institute has o�ered 106 dollars for the �rst correct solution, remain open.
https://en.wikipedia.org/wiki/Millennium_Prize_Problems

Comment. Grigori Perelman solved the Poincaré conjecture in 2003 (but refused the prize money in 2010).
https://en.wikipedia.org/wiki/Poincaré_conjecture

Example 209. (P vs NP) P versus NP is another one of the Millennium Prize Problems.

�If the solution to a problem is easy to check for correctness, is the problem easy to solve? �
https://en.wikipedia.org/wiki/P_versus_NP_problem

Roughly speaking, consider decision problems which have an answer of yes or no. P is the class of such
problems, which can be solved e�ciently. NP are those problems, for which we can quickly verify that the
answer is yes if presented with suitable evidence.
For instance.

� It is unknown whether factoring (in the sense of: does N have a factor 6M?) belongs to P or not.
The problem is de�nitely in NP because, if presented with a factor 6M , we can easily check that.

� Deciding primality is in P (maybe not so shocking since there are very e�cient nondeterministic
algorithms for checking primality; not so for factoring).

� In the (decisional) travelling salesman problem, given a list of cities, their distances and d, the task is
to decide whether a route of length at most d exists, which visits each city exactly once.
The decisional TSP is clearly in NP (take as evidence the route of length 6d). In fact, the problem
is known to be NP-complete, meaning that it is in NP and as �hard� as possible (in the sense that if
it actually is in P, then P=NP; that is, we can solve any other problem in NP e�ciently).

� Other NP-complete problems include:

� Sudoku: Does a partially �lled grid have a legal solution?

� Subset sum problem: Given a �nite set of integers, is there a non-empty subset that sums to 0?

Comment. �E�ciently� means that the problem can be solved in time polynomial in the input size.
Take for instance computing 2n (mod n), where n is the input (it has size log2(n)). This can be done in
polynomial time if we use binary exponentiation (whereas the naive approach takes time exponential in
log2(n)).
Comment. This is one of the few prominent mathematical problems which doesn't have a clear consensus.
For instance, in a 2012 poll of 151 researchers, about 85% believed P=/NP while about 10% believed P=NP.
Comment. NP are problems that can be veri�ed e�ciently if the answer is �yes�. Similarly, co-NP are
problems that can be veri�ed e�ciently if the answer is �no�. It is an open problem whether NP=/co-NP.

� Factoring is in both NP and co-NP (it is in co-NP because primality testing is in P).

� For all NP-complete problems it is unknown whether they are in co-NP. (If one of them is, then we
would, unexpectedly, have NP=co-NP.)

Armin Straub
straub@southalabama.edu

83


