
Sketch of Lecture 34 Mon, 4/15/2019

Here is a compression function, which is provably strongly collision-free.

However, it is rather slow and so is not practical for hashing larger data. On the other hand, its slowness
could be bene�cial for applications like password hashing.

Example 195. (the discrete log hash) Let p be a large safe prime (that is, q=(p¡ 1)/2 is
also prime). Let g1; g2 be two primitive roots modulo p. De�ne the compression function h as:

h: f0; 1; :::; q2¡ 1g!f1; 2; :::; p¡ 1g; h(m1+m2q)= g1
m1g2

m2 (mod p):

[Note that, although not working with inputs and outputs of certain size in bits, this is a compression function,
because the input space is much larger than the output space.]

Show that �nding a collision of h(x) is as di�cult as determining the discrete logarithm x in
g1
x= g2 (mod p).

Solution. Suppose we have a collision: g1
m1g2

m2� g1
m1
0
g2
m2
0
(mod p)

Hence, g1
(m1¡m1

0)+(m2¡m2
0)x � 1 (mod p) or, equivalently, (m1 ¡ m1

0 ) + (m2 ¡ m2
0 )x � 0 (mod p ¡ 1)

(because g1 is a primitive root and so has order p¡ 1).
This �nal congruence can now be solved for x.
More precisely, if d=gcd(m2¡m2

0 ; p¡ 1), there are actually d solutions for x. Since we chose p to be safe,
the only factors of p¡ 1 are 1; 2; (p¡ 1)/2; p¡ 1.
Since jm2¡m2

0 j< q, the only possibilities are d= 1; 2 (unless m2=m2
0 ; however, this cannot be the case

since then also m1=m1
0 , so that we wouldn't have a collision in the �rst place).

Passwords

Let's say you design a system that users access using personal passwords. Somehow, you need
to store the password information.

� The worst thing you can do is to actually store the passwords m.

This is an absolutely atrocious choice, even if you take severe measures to protect (e.g. encrypt) the
collection of passwords.
Comment. Sadly, there is still systems out there doing that. An indication that this might* be
happening is systems that require you to update passwords and then complain that your new password
is too close to the original one. Any reasonably designed system should never learn about your actual
password in the �rst place!
*: On the other hand, think about how you could check for (certain kinds of) closeness of passwords
without having to store the actual password.

� Better, but still terrible, is to instead store hashes H(m) of the passwords m.

Good. An attacker getting hold of the password �le, only learns about the hash of a user's password.
Assuming the hash function is one-way, it is infeasible for the attacker to determine the corresponding
password (if the password was random!!).
Still bad. However, passwords are (usually) not random. Hence, an attacker can go through a list of
common passwords (dictionary attack), compute the hashes and compare with the hashes of users
(similarly, a brute-force attack can simply go through all possible passwords).
Even worse, it is immediately obvious if two users are using the same password (or, if the same user
is using the same password for di�erent services using the same hash function).
Comment. So, storing password hashes is not OK unless all passwords are completely random.

Armin Straub
straub@southalabama.edu

76



� Better, a random value s is generated for each user, and then s and H(m;s) are stored.
The value s is referred to as salt.
In other words, instead of storing the hash of the password m, we are storing the hash of the salted
password, as well as the salt.
Why? Two users using the same password would have di�erent salt and hence di�erent hashes
stored. As a consequence, an attacker can (of course) still mount a dictionary or brute-force attack
but only against a single user, not all users at once.
Comment. Note how the concept of salt is similar to a nonce.
Comment. To be future-proof, the hash+salt is often stored in a single �eld in a format like (hash-
algo, salt, salted hash).
Comment. There's also the concept of pepper (usually, sort of a secret salt). This provides extra
security if the pepper is stored separately. [Sometimes pepper is used as a sort of small random salt,
which is discarded; this only slows a brute-force attack down and should instead be addressed using
the item below.]
https://en.wikipedia.org/wiki/Pepper_(cryptography)

� Finally, we should not use the usual (fast!) hash functions like SHA-2.

Why? One of the things that makes SHA-2 a good hash function in practice is its speed. However,
that actually makes SHA-2 a poor choice in this context of password hashing. An attacker can
compute billions of hashes per second, which makes a dictionary or brute-force attack very e�cient.
To make a dictonary or brute-force attack impractical, the hashing needs to be slowed down. See
Example 196 for some scary numbers.

Hashing functions like SHA-2 are not secure password hashing algorithms.
Instead, options that are considered secure include: PBKDF2, bcrypt, scrypt.

Comment. For instance, WPA2 uses PBKDF2 based on SHA-1 with 4096 (fairly small!) iterations.
Comment. Only increasing the number of iterations increases computation time but not memory usage.
scrypt is designed to also consume an arbitrarily speci�ed amount of memory.

For a nice discussion about password hashing:

https://security.stackexchange.com/questions/211/how-to-securely-hash-passwords

Example 196. (the power of brute-force) In April 2019, the Bitcoin hashrate is about
40E=4 �1019 hashes per second. How long would it take to brute-force a (completely random!)
8 character password, using all 94 printable ASCII characters (excluding the space)?

Solution. There are 948� 6.1 �1015 possible passwords. Hence, it would take about 0.00015 seconds!
Comment. Even using 10 random characters (almost no human password has that kind of entropy), there
are 9410� 5.4 �1019 possible passwords. It would take less than 1.4 seconds to go through all of these!
Comment. https://bitinfocharts.com/comparison/bitcoin-hashrate.html

Example 197. Your king's webserver contains the following code to check whether the king
is accessing the server. [As is far too common, his password derives from his girlfriend's name and year of birth.]

def is_king(password):
return password=="Ludmilla1310"

Obviously, anyone who might be able to see the code (including its binary version) learns about
your king's password. With minimal change, how can this be �xed?

Armin Straub
straub@southalabama.edu

77



Solution. The password should be hashed. For instance, in Python, using SHA-2 (why is that actually not
a good choice here?) with 256 output bits:

from hashlib import sha256
def is_king(password):

phash = sha256(password).hexdigest()
return phash == "9e4b4fe180e22bc6cdf01fe9711cf2558507e5c3ae1c3c1f6607a25741941c66"

Comment. 256 bit is 64 digits in hexadecimal.
Comment. Of course, a real implementation should use digest() instead of hexdigest().
Why is SHA not good here? Too fast to discourage brute-force attacks.

Example 198. Suppose you don't like the idea of creating random salt.

(a) How about using the same salt for all your users?

(b) Is it a good idea to use the username as salt?

Solution.

(a) This is a terrible idea and defeats the purpose of a salt. (For instance, again an attacker can immediately
see if users have the same password.)
Comment. Essentially, this is a form of pepper (if the value is kept secret, i.e. stored elsewhere).

(b) That is a reasonable idea. One reason against it is that, ideally, the salt should be unique (globally).
However, this could be easily achieved by using the username combined with something identifying
your service (like your hostname).
Comment. A possible practical reason against choosing the username for salt is that the username
might change.

Example 199. You need to hash (salted) passwords for storage. Unfortunately, you only have
SHA-2 available. What can you do?
Solution. Iterate many times! (In order to slow down the computation of the hash.) The naive way would
be to simply set h0=H(m) and hn+1=H(hn). Then use as hash the value hN for large N .
In current applications, it is typical to choose N on the order of 100;000 or higher (depending on how long
is reasonable to have your user wait each time she logs in and needs her password hashed for veri�cation).

Armin Straub
straub@southalabama.edu

78


