
Sketch of Lecture 33 Fri, 4/12/2019

Some popular hash functions:

published output bits comment
CRC32 1975 32 not secure but common for checksums
MD5 1992 128 common; used to be secure (now broken)
SHA-1 1995 160 common; used to be secure (collision found in 2017)
SHA-2 2001 256/512 considered secure
SHA-3 2015 arbitrary considered secure

� CRC is short for Cyclic Redundancy Check. It was designed for protection against common trans-
mission errors, not as a cryptographic hash (for instance, CRC is a linear function).

� SHA is short for Secure Hash Algorithm and (like DES and AES) is a federal standard selected by
NIST. SHA-2 is a family of 6 functions, including SHA-256 and SHA-512 as well as truncations of these.
SHA-3 is not meant to replace SHA-2 but to provide a di�erent alternative (especially following
successful attacks on MD5, SHA-1 and other hash functions, NIST initiated an open competition for
SHA-3 in 2007). SHA-3 is based on Keccak (like AES is based on Rijndael; Joan Daemen involved in
both). Although the ouput of SHA-3 can be of arbitrary length, the number of security bits is as for
SHA-2.
https://en.wikipedia.org/wiki/NIST_hash_function_competition

� MD is short for Message Digest. These hash functions are due to Ron Rivest (MIT), the �R� in RSA.
Collision attacks on MD5 can now produce collisions within seconds. For a practical exploit, see:
https://en.wikipedia.org/wiki/Flame_(malware)

MD6 was submitted as a candidate for SHA-3, but later withdrawn.

Constructions of hash functions

Recall that a hash function H is a function, which takes an input x of arbitrary length, and
produces an output H(x) of �xed length, say, b bit.

Example 189. (Merkle�Damgård construction) Similarly, a compression functionH~ takes
input x of length b+ c bits, and produces output H~(x) of length b bits. From such a function,
we can easily create a hash function H. How?

Importantly, it can be proved that, if H~ is collision-resistant, then so is the hash function H.

Solution. Let x be an arbitrary input of any length. Let's write x= x1x2x3:::xn, where each xi is c bits (if
necessary, pad the last block of x so that it can be broken into c bit pieces).
Set h1=0 (or any other initial value), and de�ne hi+1=H~(hi; xi) for i> 1. Then, H(x)=hn+1 (b bits).
[In H~(hi; xi), we mean that the b bits for hi are concatenated with the c bits for xi, for a total of b+ c bits.]
Comment. This construction is known as a Merkle�Damgård construction and is used in the design of many
hash functions, including MD5 and SHA-1/2.
Careful padding. Some care needs to be applied to the padding. Just padding with zeroes would result in
easy collisions (why?), which we would like to avoid. For more details:
https://en.wikipedia.org/wiki/Merkle�Damgård_construction

Armin Straub
straub@southalabama.edu

73



Example 190. Consider the compression function H~ : f3 bitsg!f2 bitsg de�ned by

x 000 001 010 011 100 101 110 111
H~(x) 00 10 11 01 10 00 01 11

[This was not chosen randomly: the �rst output bit is the sum of the digits, and the second output bit is just
the second input bit.]

(a) Find a collision of H~ .

(b) Let H(x) be the hash function obtained from H~ using the Merkle�Damgård construc-
tion (using initial value h1=0). Compute H(1101).

(c) Find a collision with H(1101).

Solution.

(a) For instance, H~(001)=H~(100).

(b) Here, b=2 and c=1, so that each xi is 1 bit: x1x2x3x4= 1101.
h1= 00
h2=H~(h1; x1)=H~(001)= 10

h3=H~(h2; x2)=H~(101)= 00

h4=H~(h3; x3)=H~(000)= 00

h5=H~(h4; x4)=H~(001)= 10
Hence, H(1101)=h5= 10.

(c) Our computation above shows that, for instance, H(1)= 10=H(1101).

The construction of good hash algorithms is linked to the construction of good ciphers. Below,
we indicate how to use a block cipher to construct a hash.

Why linked? The ciphertext produced by a good cipher should be indistinguishable from random bits.
Similarly, the output of a cryptographic cipher should look random, because the presence of patterns would
likely allow us to compute preimages or collisions.
However. The design goals for a hash are somewhat di�erent than for a cipher. It is therefore usually advisable
to not crossbreed these constructions and, instead, to use a specially designed hash like SHA-2 when a hash
is needed for cryptographic purposes.

First, however, a cautionary example.

Example 191. (careful!) Let Ek be encryption using a block cipher (like AES). Is the com-
pression function H~ de�ned by

H~(x; k)=Ek(x)

one-way?

Solution. No, it is not one-way.
Indeed, given y, we can produce many di�erent (x; k) such that H~(x; k) = y or, equivalently, Ek(x) = y.
Namely, pick any k, and then choose x=Dk(y).

Armin Straub
straub@southalabama.edu

74



Example 192. Let Ek be encryption using a block cipher (like AES). Then the compression
function H~ de�ned by

H~(x; k)=Ek(x)� x

is usually expected to be collision-resistant.
Let us only brie�y think about whether H~ might have the weaker property of being one-way (as opposed
to the previous example). For that, given y, we try to �nd (x; k) such that H~(x; k) = y or, equivalently,
Ek(x)�x= y. This seems di�cult.
Just getting a feeling. We could try to �nd such (x; k) with x=0. In that case, we need to arrange k such
that Ek(0) = y. For a block cipher like AES, this seems di�cult. In fact, we are trying a known-plaintext
attack on the cipher here: assuming that m = 0 and c = y, we are trying to determine the key k. A good
cipher is designed to resist such an attack, so that this approach is infeasible.
Comment. Combined with the Merkle�Damgård construction, you can therefore use AES to construct a
hash function with 128 bits output size. However, as indicated before, it is advisable to use a hash function
designed speci�cally for the purpose of hashing.
For several other (more careful) constructions of hash functions from block ciphers, you can check out
Chapter 9.4.1 in the Handbook of Applied Cryptography (Menezes, van Oorschot and Vanstone, 2001), freely
available at: http://cacr.uwaterloo.ca/hac/

We have seen how hash functions can be constructed from block ciphers (though this is usually
not advisable). Similarly, hash functions can be used to build PRGs (and hence, stream ciphers).

Example 193. A hash function H(x), producing b bits of output, can be used to build a PRG
as follows. Let x0 be our b bit seed. Set xn=H(xn¡1), for n>1, and yn=xn (mod2). Then,
the output of the PRG are the bits y1y2y3:::
Comment. As for the B-B-S PRG, if b is large, it might be OK to extract more than one bit from each xn.
Comment. Technically speaking, we should extract a �hardcore bit� yn from xn.
Comment. It might be a little bit better to replace the simple rule xn=H(xn¡1) with xn=H(x0; xn¡1).
Otherwise, collisions would decrease the range during each iteration. However, if b is large, this should not
be a practical issue. (Also, think about how this alleviates the issue in the next example.)
Comment. Of course, one might then use this PRG as a stream cipher (though this is probably not a great
idea, since the design goals for hashes and secure PRGs are not quite the same). Our book lists a similar
construction in Section 8.7: starting with a seed x0 = k, bytes xn are created as follows x1 = H(x0) and
xn=L8(H(x0; xn¡1)), where L8 extracts the leftmost 8 bits. The output of the PRG is x1x2x3::: However,
can you see the �aw in this construction? (Hint: it repeats very soon!)

Example 194. Suppose, with the same setup as in the previous example, we let our PRG
output x1x2x3:::, where each xn is b bits. What is your verdict?
Solution. This PRG is not unpredictable (at all). After b bits have been output, x1 is known and x2=H(x1)
can be predicted perfectly. Likewise, for all the following output.
Comment. While completely unacceptable for cryptographic purposes, this might be a �ne PRG for other
purposes that do not need unpredictability.

Armin Straub
straub@southalabama.edu

75


