
Sketch of Lecture 32 Wed, 4/10/2019

Example 182. (common modulus attack on RSA) Alice encrypts m using each of the
RSA public keys (N; e1) and (N; e2) so that the ciphertexts are c1 = me1 (mod N ) and
c2=me2 (modN). Eve might be able to �gure out m from c1 and c2!! How and when?

Solution. The crucial observation is that c1xc2
y�me1xme2y=me1x+e2y (modN). Eve can choose x and y.

She knows m if she can arrange x and y such that e1x+ e2y=1. This is possible if gcd(e1; e2)=1, in which
case Eve would use the extended Euclidean algorithm to determine appropriate x and y.
A scenario. Bob's public RSA key is (N; e). However, when Alice requests this public key from Bob, her
message gets intercepted by Eve who instead sends (N;e2) back to Alice, where e2 di�ers from e in only one
bit. Alice uses (N; e2) to encrypt her message and sends c2 to Bob. Of course, Bob fails to decrypt Alice's
message and so resends his public key to Alice (this time, Eve doesn't intervene). Alice now uses (N; e) to
encrypt her message and send c to Bob.
Since e¡ e2=�2r, we have gcd(e; e2)= 1 (why?!), so that Eve can determine m as explained above.
Comment on that scenario. From a practical point of view, we can argue that, if Eve can trick Alice into
using a modi�ed version of Bob's public key, then she might as well give a completely new public key (that
Eve created) to Alice, in which case she can immediately decipher c2. That's certainly true. However, that
way, Eve's malicious intervention would be plainly visible as such.

Example 183. (chosen ciphertext attack on RSA) Show that RSA is not secure under a
chosen ciphertext attack.
First of all, let us recall that in a chosen ciphertext attack, Eve has some access to a decryption device. In
the present case, we mean the following: Eve is trying to determine m from c. Clearly, we cannot allow her
to use the decryption device on c (because then she has m and nothing remains to be said). However, Eve
is allowed to decrypt some other ciphertext c0 of her choosing (hence, �chosen ciphertext�).
You may rightfully say that this is a strange attacker, who can decrypt messages except the one of particular
interest. This model is not meant to be realistic; instead, it is important for theoretical security considerations:
if our cryptosystem is secure against this (adaptive) version of chosen ciphertext attacks, then it is also secure
against any other reasonable chosen ciphertext attacks.

Solution. RSA is not secure under a chosen ciphertext attack:
Suppose c=me (modN) is the ciphertext for m.
Then, Eve can ask for the decryption m0 of c0 = 2ec (mod N). Since c0 = (2m)e (mod N), Eve obtains
m0� 2m, from which she readily determines m=2¡1m0 (modN).
Comment. On the other hand, RSA-OAEP is provably secure against chosen ciphertext attacks. Recall that,
in this case, m is padded prior to encryption. As a result, 2m or, more generally am, is not going to be a
valid plaintext.

Example 184. What we just exploited is that RSA is multiplicatively homomorphic.
Multiplicatively homomorphic means the following: suppose m1 and m2 are two plaintexts with ciphertexts
c1 and c2. Then, (the residue) m1m2 has ciphertext c1c2.
[That is, multiplication of plaintexts translates to multiplication of ciphertexts, and vice versa. Mathemati-
cally, this means that the map m! c is a homomorphism (with respect to multiplication).]
Indeed, for RSA, c1=m1

e and c2=m2
e, so that c1c2=m1

em2
e=(m1m2)e (modN) is the ciphertext form1m2.

Why care? In our previous example, being multiplicatively homomorphic was a weakness of RSA (which is
�cured� by RSA-OAEP). However, there are situations where homomorphic ciphers are of practical interest.
With a homomorphic cipher, we can do calculations using just the ciphertexts without knowing the plaintexts
(for instance, the ciphertexts could be encrypted (secret) votes, which could be publicly posted; then anyone
could add up (in an additively homomorphic system) these votes into a ciphertext of the �nal vote count; the
advantage being that we don't need to trust an authority for that count). The search for a fully homomorphic
encryption scheme is a hot topic. For a nice initial read, you can �nd more at:
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/

Armin Straub
straub@southalabama.edu

70



Example 185. (chosen ciphertext attack on ElGamal) Show that ElGamal is not secure
under a chosen ciphertext attack.
Solution. Recall, again, that in a chosen ciphertext attack, Eve is trying to determine m from c and Eve has
access to a decryption device, which she can use, except not to the ciphertext c in question.
Suppose c = (c1; c2) = (gy; gxym) is the ciphertext for m. Then (c1; 2c2) = (gy; gxy2m) is a ciphertext
for 2m. Hence, Eve can ask for the decryption of c0= (c1; 2c2), which gives her m0= 2m, from which she
determines m=2¡1m0 (mod p).

In fact, again, the reason that ElGamal is not secure under a chosen ciphertext attack is that
it is multiplicatively homomorphic.

Example 186. Show that ElGamal is multiplicatively homomorphic.
Solution. Let (gy1; gxy1m1) be a ciphertext for m1, and (gy2; gxy2m2) a ciphertext for m2.

The product (component-wise) of the ciphertexts is (gy1+y2; gx(y1+y2)m1m2), which is a ciphertext for
m1m2. So, again, the product of ciphertexts corresponds to the product of plaintexts.

A quick summary of some aspects of RSA and ElGamal.

� As long as appropriate key sizes are used, both RSA and ElGamal appear secure.

About the same key size needed for both: at least 1024 bits. By now, maybe 2048 bits.

� The security of both RSA and ElGamal can be compromised by using a cryptographically
insecure PRG to generate the secret pieces p; q (for RSA) or x (for ElGamal).

� It is important to have di�erent ciphers, especially ones that rely on the di�culty of
di�erent mathematical problems.
Comment. Factoring N = pq and computing discrete logarithms modulo p are the two di�erent
problems for RSA and ElGamal, respectively. It is not known whether the ability to solve one of
them would make it signi�cantly easier to also solve the other one. However, historically, advances
in factorization methods (like the number �eld sieve) have subsequently lead to similar advances in
computing discrete logarithms. Both problems seem of comparable di�culty.

� Both are multiplicatively homomorphic, but RSA looses this property when padded.

Application: hash functions

A hash function H is a function, which takes an input x of arbitrary length, and produces an
output H(x) of �xed length, say, b bit.

Example 187. (error checking) When Alice sends a long messagem to Bob over a potentially
noisy channel, she also sends the hash H(m). Bob, who receives m0 (which, he hopes is m)
and h, can check whether H(m0)= h.

Comment. This only protects against accidental errors inm (much like the check digits in credit card numbers
we discussed earlier). If Eve intercepts the message (m;H(m)), she can just replace it with (m0;H(m0)) so
that Bob receives the message m0.
Eve's job can be made much more di�cult by sending m and H(m) via two di�erent channels. For instance,
in software development, it is common to post hashes of �les on websites (or announce them otherwise),
separately from the actual downloads. For that use case, we should use a one-way hash (see next example).

Armin Straub
straub@southalabama.edu

71



� The hash function H(x) is called one-way if, given y, it is computationally infeasible
to compute m such that H(m)= y. [Also called preimage-resistant.]

This makes the hash function (weakly) collision-resistant in the sense that given a message m it is
di�cult to �nd a second message m0 such that H(m) =H(m0). [Also called second preimage-
resistant.]

� It is called (strongly) collision-resistant if it is computationally infeasible to �nd two
messages m1;m2 such that H(m1)=H(m2).

Comment. Every hash function must have many collisions. On the other hand, the above require-
ment says that �nding even one must be exceedingly di�cult.

Example 188. (error checking, cont'd) Alice wants to send a message m to Bob. She wants
to make sure that nobody can tamper with the message (maliciously or otherwise). How can
she achieve that?
Solution. She can use a one-way hash function H, send m to Bob, and publish (or send via some second
route) y=H(m). Because H is one-way, Eve cannot �nd a value m0 such that H(m0)= y.

Some applications of hash functions include:

� error-checking: send m and H(m) instead of just m

� tamper-protection: send m and H(m) via di�erent channels (H must be one-way!)

If H is one-way, then Eve cannot �nd m0 such that H(m0)=H(m), so the cannot tamper with m
without it being detected.

� password storage: discussed later (there are some tricky bits)

� digital signatures: more later

� blockchains: used, for instance, for cryptocurrencies such as Bitcoin

Armin Straub
straub@southalabama.edu

72


