
Sketch of Lecture 30 Fri, 4/5/2019

Further comments on RSA and ElGamal

Theorem 171. Determining the secret private key d in RSA is as di�cult as factoring N .

Proof. Let us show how to factor N = pq if we know e and d.

� Write ed¡ 1=2tm, where t is chosen as large as possible such that 2t divides ed¡ 1.
Since ed¡ 1� 0 (mod (p¡ 1)(q¡ 1)) and 22 divides (p¡ 1)(q¡ 1), we have t> 2.

� Pick a random invertible residue x. Observe that xed¡1� 1 (modN). In other words, (xm)2
t� 1.

Hence, the multiplicative order of xm must divide 2t.

� Suppose that xm has di�erent order modulo p than modulo q.

Note. This works for at least half of the (invertible) residues x. If we are unlucky, we
just select another x.

Since both orders must divide 2t, we may suppose xm has order 2smodulo p, and larger order modulo q.
Then, x2

sm� 1 (mod p) but x2
sm�/ 1 (mod q).

Consequently, gcd(x2
sm¡ 1; N)= p so that we have found the factor p of N .

Note. Of course, we don't know s (because we don't know p and q), but we can just
go through all s=1; 2; :::; t¡ 1. One of these has to reveal the factor p. �

However. It is not known whether knowing d is actually necessary for Eve to decrypt a given ciphertext c.
This remains an important open problem.

Example 172. (homework) Bob's public RSA key is N = 323, e = 101. Knowing d = 77,
factor N using the approach of the previous theorem.

Solution. Here, de¡ 1= 7776=25 � 243 so that t=5 and m= 243.

� Let's pick a=2. am=2243� 246 (mod323) must have order dividing 25.
gcd(2462¡ 1; 323) = 19 (so we don't even need to check gcd(2462

s¡ 1;323) for s=2; 3; 4)
Hence, we have factored N = 17 � 19.

Comment. Among the �(323)=16 �18=288 invertible residues a, only 36 would not lead to a factorization.
The remaining 252 residues all reveal the factor 19.
Another project idea. Run some numerical experiments to get a feeling for the number of residues that
result in a factorization.

Armin Straub
straub@southalabama.edu

65



Semantic security

De�nition 173. Bob's public key cryptosystem is semantically secure if Eve cannot do better
than guessing in the following challenge:

� Bob determines a random public and private key. The public key is given to Eve.

� Eve selects two plaintexts m1 and m2.

� Alice �ips a fair coin and, accordingly, using the public key encrypts m1 or m2 as c.

� Eve now needs to decide whether c is the encryption of m1 or m2.

For this de�nition to make precise mathematical sense, we need to assume that Eve's computing power is
somehow limited (typically, she is limited to polynomial-time algorithms).
Comment. Also, many variations exist of what semantic security exactly is. All of these try to capture the
idea that an attacker does not learn anything about m from knowing c. The one above is often referred to
as IND-CPA (Indistinguishability under Chosen Plaintext Attack).
Important comment. Realize that semantic security is a very strong property to ask for! In particular, this
is much stronger than what we usually think about in terms of security: you might call a cipher secure if it
is �impossible� for an attacker to get m from c. Semantic security is requiring that an attacker gets so little
information from c that she cannot even tell whether it came from (her own choices) m1 or m2.

Example 174. Is vanilla RSA semantically secure?
Solution. No. Eve can just encrypt both m1 and m2 herself, and compare with c. She then knows for sure
which of the two was encrypted.
Comment. As mentioned before, in practice, RSA is never used in its vanilla (or �textbook�) version (unless
random plaintexts are encrypted). Instead, it is randomized (like ElGamal is by design) by padding the
plaintext with random stu�.
Check out OAEP: https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
The resulting RSA-OAEP has been proven semantically secure (under the �RSA assumption� that �nding m
from c is hard).

Example 175. Is ElGamal semantically secure?
Solution. Essentially, yes.
Recall that the public key is (p; g; h)= (p; g; gx).
The ciphertext is (c1; c2)=(gy;hym)=(gy; gxym). Eve needs to decide whether them in there ism1 or m2.
Equivalently, she needs to decide whether r= c2/m1 (or r= c2/m2) equals gxy or not.
This is essentially the DDH problem.
Strictly speaking. Because of the issue with quadratic residues mentioned when we introduced the DDH
problem, ElGamal is not semantically secure in the sense we de�ned things. However, if we wanted (this is
more of a theoretical point), this issue could be �xed by not computing with all invertible residues modulo p,
but only with quadratic residues. We could further select p to be a safe prime, meaning that (p¡ 1)/2 is
prime again, in which case all quadratic residues (except 1) have order (p¡ 1)/2 (so that no similar games
can be played using orders of elements).

Practical implications. Indeed, Di�e�Hellman and ElGamal in practice often use safe primes p. In that case,
as we observed in Example 169, there is no elements of small order (besides 1 and ¡1). Since generating
such primes can be a bit expensive, it is common to use preselected ones. For instance, RFC 3526 lists six
such primes (together with a generator g) with 1536; 2048; :::; 8192 bits.
https://www.ietf.org/rfc/rfc3526.txt

Important. It is perfectly �ne that p and g are not random in Di�e�Hellman or ElGamal. However, it is
absolutely crucial that x (and y) are random (generated using a cryptographically secure PRG).

Armin Straub
straub@southalabama.edu

66


