
Sketch of Lecture 28 Wed, 3/27/2019

The ElGamal public key cryptosystem and discrete logarithms

Whereas the security of RSA relies on the di�culty of factoring, the security of ElGamal and
Di�e�Hellman relies on the di�culty of computing discrete logarithms.

Discrete logarithms

Suppose b= ax (modN). Finding x is called the discrete logarithm problem mod N . If N
is a large prime p, then this problem is believed to be di�cult.
Note. If b=ax, then x= loga(b). Here, we are doing the same thing, but modulo N . That's why the problem
is called the discrete logarithm problem.

Example 159. Find x such that 4� 3x (mod 7).
Solution. We have seen in Example 145 that 3 is a primitive root modulo 7. Hence, there must be such an x.
Going through the possibilities (32� 2, 33� 6, 34� 4), we �nd x=4, because 34� 4 (mod7).

Example 160. Find x such that 3� 2x (mod101).
Solution. Let us check that the solution is x = 69. Indeed, a quick binary exponentiation con�rms that
269� 3 (mod101). (Do it!)
The point is that it is actually (believed to be) very di�cult to compute these discrete logarithms. On the
other hand, just like with factorization, it is super easy to verify the answer if somebody tells us the answer.
Comment. We can check that 2 is a primitive root modulo 101. That is, 2 (mod101) has (multiplicative)
order 100. That means every equation 2x� a (mod101), where a�/ 0, has a solution.

Di�e�Hellman key exchange

(Di�e�Hellman key exchange)

� Alice or Bob choose a prime p and a primitive root g (mod p).

� Bob randomly selects a secret integer x and reveals gx (mod p) to everyone.

Alice randomly selects a secret integer y and reveals gy (mod p) to everyone.

� Alice and Bob now share the secret gxy (mod p).
Indeed, Alice can compute gxy=(gx)y using the public gx and her secret y.
Likewise, Bob can compute gxy= (gy)x using the public gy and his secret x.

Why is this secure? We need to see why eavesdropping Eve cannot (simply) obtain the secret gxy (modp).
She knows g; gx; gy (mod p) and needs to �nd gxy (mod p). This is the computational Di�e�Hellman
problem (CDH), which is believed to be hard (it would be easy if we could compute discrete logarithms).

Example 161. You are Eve. Alice and Bob select p= 53 and g= 5 for a Di�e�Hellman key
exchange. Alice sends 43 to Bob, and Bob sends 20 to Alice. What is their shared secret?
Solution. If Alice's secret is y and Bob's secret is x, then 5y� 43 and 5x� 20 (mod53).
Since we haven't learned a better method, we just compute 52; 53; ::: until we �nd 43 or 20:
52= 25, 53� 19, 54� 19 � 5�¡11, 55�¡11 � 5�¡2, 56�¡2 � 5�¡10� 43 (mod53).
Hence, Alice's secret is y=6. The shared secret is 206� 9 (mod53).

Armin Straub
straub@southalabama.edu

60



ElGamal encryption

Proposed by Taher ElGamal in 1985

The original paper is actually very readable: https://dx.doi.org/10.1109/TIT.1985.1057074

(ElGamal encryption)

� Bob chooses a prime p and a primitive root g (mod p).
Bob also randomly selects a secret integer x and computes h= gx (mod p).

� Bob makes (p; g; h) public. His (secret) private key is x.

� To encrypt, Alice �rst randomly selects an integer y.

Then, c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).

� Bob decrypts m= c2c1
¡x (mod p).

Why does decryption work? c2c1
¡x=(hym)(gy)¡x=((gx)ym)(gy)¡x=m (mod p)

More conceptually, the key idea (featured in Di�e�Hellman) that makes ElGamal encryption work is that
Alice (her private secret is y) and Bob (his private secret is x) actually share a secret: gxy

Note that encryption is just multiplying m with the shared secret hy= gxy. Likewise, decryption is division
by the shared secret c1x= gxy.
Comment. For ElGamal, the message space actually is f1; 2; :::; p¡ 1g. m=0 is not permitted.
That's, of course, no practical issue. For instance, we could simply identify f1;2; :::; p¡1g with f0;1; :::; p¡2g
by adding/subtracting 1.
Comment. p and g don't have to be chosen randomly. They can be reused. In fact, it is common to choose
p to be a �safe prime� (see next comment), with speci�c pre-selected choices listed, for instance, in RFC 3526.
Advanced comment. Note that in order to check whether g is a primitive root modulo p, we need to be
able to factor p¡ 1, which in general is hard (2 is an obvious factor, but other factors are typically large and,
in fact, we need them to be large in order for the discrete logarithm problem to be di�cult). It is therefore
common to start with a prime n and then see if 2n+1 is prime as well, in which case we select p=2n+1.
Such primes p [primes such that (p¡ 1)/2 is prime, too] are called safe primes (more later).
On the other hand, g doesn't necessarily have to be a primitive root. However, we need the group generated
by g (the elements 1; g; g2; g3; :::) to be large. For more fancy cryptosystems, we can even replace these
groups with other groups such as those generated by elliptic curves.

Example 162. Bob chooses the prime p= 31, g= 11, and x=5. What is his public key?

Solution. Since h= gx (mod p) is h� 115� 6 (mod31), the public key is (p; g; h)= (31; 11; 6).
Comment. Bob's secret key is x=5. In principle, an attacker can compute x from 11x�6 (mod31). However,
this requires computing a discrete logarithm, which is believed to be di�cult if p is large.

Example 163. Bob's public ElGamal key is (p; g; h)= (31; 11; 6).

(a) Encrypt the message m=3 (�randomly� choose y=4) and send it to Bob.

(b) Recall that Bob's secret private key is x=5. Use it to decrypt c=(9; 13).

(c) Determine Bob's secret key from his public key.

Armin Straub
straub@southalabama.edu

61



Solution.

(a) The ciphertext is c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).

Here, c1= 114� 9 (mod31) and c2=64 � 3� 13 (mod31). Hence, the ciphertext is c=(9;13).

(b) We decrypt m= c2c1
¡x (mod p).

Here, m= 13 � 9¡5� 3 (mod31).
Comment. One option is to compute 9¡1 � 7 (mod 31), followed by 9¡5 � 75 � 5 (mod 31) and,
�nally, 13 �9¡5�13 �5�3 (mod31). Another option is to begin with 9¡5�925 (mod31) (by Fermat's
little theorem).

(c) To �nd Bob's secret key x, we need to solve 11x� 6 (mod31). This yields x=5.
(Since we haven't learned a better method, we just try x=1; 2; 3; ::: until we �nd the right one.)

Comment. Alternatively, after having done the �rst part, we know that m = c2c1
¡x (mod p) takes

the form 3 = 13 � 9¡x (mod31), which is equivalent to 9x= 13 � 3¡1� 25 (mod31). While this also
reveals x=5, there is an issue with this approach. Can you see it?
[The issue is that 9 (which is c1 and could be anything) does not have to be a primitive root. In fact,
9 is not a primitive root modulo 31. Accordingly, 9x� 25 (mod31) does not have a unique solution:
x= 20 is another one (and does not correspond to Bob's private key).]

Example 164. (extra) Bob's public ElGamal key is (p; g; h)= (23; 10; 11).

(a) Encrypt the message m=5 (�randomly� choose y=2) and send it to Bob.

(b) Encrypt the message m=5 (�randomly� choose y=4) and send it to Bob.

(c) Break the cryptosystem and determine Bob's secret key.

(d) Use the secret key to decrypt c=(8; 7).

(e) Likewise, decrypt c=(18; 19).

Solution.

(a) The ciphertext is c=(c1; c2) with c1= gy (mod p) and c2=hym (mod p).
Here, c1= 102� 8 (mod23) and c2= 112 � 5� 6 � 5� 7 (mod23). Hence, the ciphertext is c=(8; 7).

(b) Now, c1= 104� 18 (mod23) and c2= 114 � 5� 13 � 5� 19 (mod23) so that c=(18; 19).

(c) To �nd Bob's secret key x, we need to solve 10x� 11 (mod23). This yields x=3.
(Since we haven't learned a better method, we just try x=1; 2; 3; ::: until we �nd the right one.)

(d) We decrypt m= c2c1
¡x (mod p).

Here, m=7 � 8¡3� 7 � 4� 5 (mod23), as we knew from the �rst part.

[8¡1� 3 (mod23), so that 8¡3� 33� 4 (mod23). Or, use Fermat: 8¡3� 819� 4 (mod23).]

(e) In this case, m= 19 �18¡3� 19 � 16� 5 (mod23), as we knew from the second part.

Armin Straub
straub@southalabama.edu

62


