
Sketch of Lecture 27 Mon, 3/25/2019

Review. RSA

Example 154. If N = 77, what is the smallest (positive) choice for e?

Solution. Technically, e=1 works but then we wouldn't be encrypting at all.
Note that e must be invertible modulo �(N)= 6 � 10= 60. Hence, e=2; 3; 4; 5; 6 are not allowed.
The smallest possible choice for e therefore is e=7.

Example 155. Bob's public RSA key is N = 33, e= 13. His private key is d= 17.

(a) Explain how the decryption of, say, c= 26 can be sped up using the CRT.

(b) Encrypt the message m= 4 and send it to Bob. Compare with the example from last
class where N = 33, e=3.

(c) Bob's choice of e= 13 is actually functionally equivalent to e=3 and, similarly, d can
be obtained as e¡1 (mod 10), resulting in d=7. Explain and generalize these claims!

(d) An RSA user is shocked by the previous part and exclaims �RSA is only half as secure
as I thought:::!� How shocked should we be?

Solution. Note that the private key is d� 13¡1 (mod20)� 17.

(a) To decrypt, Bob needs to computem=cd (modN). Knowing thatN= pq=3 �11, we instead compute
cd (mod p) and cd (mod q) [which is less work] and then use the CRT to recover m (modN).

Here, 2617� (¡1)17� 2 (mod3) and 2617� 417� 47� 4 � 42 � 44� 4 � 5 � 3� 5 (mod11).
Hence, m= 2617 (mod33)� 2 � 11 � (11)mod 3

¡1 +5 � 3 � (3)mod 11
¡1 � 22 � (¡1)+ 15 � 4� 5 (mod33).

Comment. Note that (11)mod 3
¡1 and (3)mod 11

¡1 can be precomputed and reused. In practice, using the
CRT leads to about a 4-fold speed up.

(b) The ciphertext is c=me (modN). Here, c� 413� :::� 31 (mod33).

If e=3 instead, then c� 43= 64� 31 (mod33) so that we get the same ciphertext. See next item!

(c) If you look back at our proof of Theorem 151, you'll see that (again using the CRT) we only need
de� 1 (mod (p¡ 1)) and de� 1 (mod (q¡ 1)) in order that mde�m (mod pq).

So, instead of d� e¡1 (mod (p¡ 1)(q¡ 1)), it is enough that d� e¡1 (modlcm(p¡ 1; q¡ 1)).
Here, lcm(2;10) = 10, so that we only need d= e¡1 (mod10).

(d) It is de�nitely misleading that RSA is �half� as secure. It is indeed the case though that the key space
for the secret key d is only half (or even less) as big as that RSA user initially thought.
However, that means that, for instance, if N is 2048 bit, then the secret key is one bit (possibly more)
less than what the shocked RSA user expected. That hardly quali�es as �half as secure�.
Comment. However, if lcm(p ¡ 1; q ¡ 1) is �too small�, that is, gcd(p ¡ 1; q ¡ 1) is �too big� (so
that we are loosing considerably more than 1 bit for the key size), then p; q should be discarded. If
gcd(p¡ 1; q¡ 1)� 2e, then we are loosing about e bits for the key size.

Example 156. RSA is so cool! Why do we even care about, say, AES anymore?

Solution. RSA is certainly cool, but it is very slow (comparatively). As such, RSA is not practical for
encrypting larger amounts of data. RSA is, however, perfect for sharing secret keys, which can then be used
for encrypting data using, say, AES.

Armin Straub
straub@southalabama.edu

58



Example 157. Is it a problem that m=1 is always encrypted to c=1? (Likewise for m=0.)

Solution. Well, it would be a problem if we reply to questions using YES (say, 1) and NO (say, 0) and encrypt
our reply. However, this would always be a terrible idea in any deterministic public key cryptosystem (that
is, a system, in which a message gets encrypted in a single way)!
Why? That's because Eve can just encrypt both YES and NO (or any collection of expected messages) and
see which matches the ciphertext she intercepted.

Important conclusion. We must not send messages taken from a small predictable set and encrypt them
using a deterministic public key cryptosystem like RSA.

Once realized, this is easy to �x: for instance, Alice can just augment the plaintext with some random garbage
in such a way that Bob can discard that garbage after decryption. This is done when RSA is used in practice.

Comment. This applies to any public key cryptosystem, in which a message gets encrypted in a single way.
To avoid this issue, some randomness is typically introduced. For instance, for RSA, when used in practice, the
plaintext would be padded with random noise before encryption. On the other hand, the ElGamal encryption
we discuss next, has such randomness already built into it.
Comment. Note that this is not an issue with symmetric ciphers like DES or AES. In that case, even if
the attacker knows that the plaintext must be one of �0� or �1�, she still cannot draw any conclusions from
intercepting the ciphertext.

Example 158. (extra) Bob's public RSA key is N = 55, e=7.

(a) Encrypt the message m=8 and send it to Bob.

(b) Determine Bob's secret private key d.

(c) You intercept the message c=2 from Alice to Bob. Decrypt it using the secret key.

Solution.

(a) The ciphertext is c=me (modN). Here, c� 87 (mod55)
82� 9, 84� 92� 26. Hence, 87=84 � 82 � 8� 26 � 9 � 8� 2 (mod55). Hence, c=2.

(b) N =5 �11, so that �(N) = 4 �10= 40.
To �nd d, we compute e¡1 (mod40) using the extended Euclidean algorithm:

gcd(7; 40) 40 = 6 � 7 ¡ 2
= gcd(2; 7) 7 = 3 � 2 +1

= 1

Backtracking through this, we �nd that Bézout's identity takes the form

1= 7 ¡ 3 � 2 = 7 ¡ 3 �
¡
6 � 7 ¡ 40

�
=¡17 � 7 + 3 � 40 :

Hence, 7¡1�¡17� 23 (mod40) and, so, d= 23.
Comment. Actually, as discussed in Example 155, �(N)=(p¡1)(q¡1)=4 �10 can be replaced with
lcm(p¡ 1; q ¡ 1) = lcm(4; 10) = 20. It follows that the pair (e; d) = (7; 23) is equivalent to the pair
(e; d) = (7; 3).

(c) We need to compute m= cd (modN), that is, m=223 (mod55).
22=4, 24= 16, 28� 36�¡19, 216� 192� 31 (mod55). Hence, 223=216 � 24 � 22 � 2�31 �16 � 4 � 2�
8 (mod55).
That is, m=8 (as we already knew from the �rst part).
Comment. As noted above, d=3 is equivalent to d= 23. Indeed, m=23=8 (mod55).

Armin Straub
straub@southalabama.edu

59


