
Sketch of Lecture 26 Wed, 3/13/2019

Comments on primitive roots

Example 148. Determine all primitive roots modulo 11.

Solution. Since �(11)= 10, the possible orders of residues modulo 11 are 1; 2;5;10. Residues with order 10
are primitive roots. Our strategy is to �nd one primitive root and to use that to compute all primitive roots.
There is no good way of �nding the �rst primitive root. We will just try the residues 2;3;5; ::: (why not 4?!)
We compute the order of 2 (mod11):
Since 22=4�/ 1, 25�¡1�/ 1 (mod11), we �nd that 2 has order 10. Hence, 2 is a primitive root.

All other invertible residues are of the form 2x. Recall that the order of 2x (mod11) is 10
gcd(10; x) .

Hence, 2x is a primitive root if and only if gcd(10; x)= 1, which yields x=1; 3; 7; 9.
In conclusion, the primitive roots modulo 11 are 21=2; 23=8; 27� 7; 29� 6.

Example 149. (extra) Determine all primitive roots modulo 22.

Solution. We proceed as in the previous example:

� Since �(22)= 10, the possible orders of residues modulo 22 are 1; 2; 5; 10.

� We �nd one primitive root by trying residues 3; 5; ::: (2 is out because it is not invertible modulo 22)
Since 35� 1 (mod22), 3 is not a primitive root modulo 22.
Since 55� 1 (mod22), 5 is not a primitive root modulo 22.
Since 72�/ 1, 75�¡1�/ 1 (mod22), 7 is a primitive root modulo 22.

� 7x (mod22) has order 10
gcd(10; x) . We have gcd(10; x)= 1 for x=1; 3; 7; 9.

� Hence, the primitive roots modulo 22 are 71=7; 73� 13; 77� 17; 79� 19.

Proceeding as in the previous example, we obtain the following result.

Theorem 150. (number of primitive roots) Suppose there is a primitive root modulo n.
Then there are �(�(n)) primitive roots modulo n.

Proof. Let x be a primitive root. It has order �(n). All other invertible residues are of the form xa.

Recall that xa has order �(n)

gcd(�(n); a) . This is �(n) if and only if gcd(�(n); a)=1. There are �(�(n)) values

a among 1; 2; :::; �(n), which are coprime to �(n).
In conclusion, there are �(�(n)) primitive roots modulo n. �

Comment. Recall that, for instance, there is no primitive root modulo 15. That's why we needed the
assumption that there should be a primitive root modulo n (which is the case if and only if n is of the form
1; 2; 4; pk; 2pk for some odd prime p).

In particular, since there are always primitive roots modulo primes, we have the following
important case:

There are �(�(p))= �(p¡ 1) primitive roots modulo a prime p.
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Back to RSA

(RSA encryption)

� Bob chooses large random primes p; q.

� Bob chooses e (and then computes d) such that de� 1 (mod (p¡ 1)(q¡ 1)).

� Bob makes N = pq and e public. His (secret) private key is d.

� Alice encrypts c=me (modN).

� Bob decrypts m= cd (modN ).

Does decryption always work? What Bob computes is cd� (me)d=mde (modN). It follows from Euler's
theorem and de� 1 (mod�(N)) that mde�m (mod�(N)) for all invertible residues m. That this actually
works for all residues can be seen from the Chinese Remainder Theorem (see Theorem 151 below).
Is that really secure? Well, if implemented correctly (we will discuss potential issues), RSA has a good
track record of being secure. Next class, we will actually prove that �nding the secret key d is as di�cult
as factoring N (which is believed, but has not been proven, to be hard). On the other hand, it remains an
important open problem whether knowing d is actually necessary to decrypt a given message.
Comment. The (p¡ 1)(q ¡ 1) in the generation of d can be replaced with lcm(p¡ 1; q ¡ 1). This will be
illustrated in Example 155.

Theorem 151. Let N = pq and d; e be as in RSA. Then, for any m, m�mde (modN).
Comment. Using Euler's theorem, this follows immediately for residues m which are invertible modulo N .
However, it then becomes tricky to argue what happens if m is a multiple of p or q.

Proof. By the CRT, we have m�mde (modN) if and only if m�mde (mod p) and m�mde (mod q).
Since de � 1 (mod (p ¡ 1)(q ¡ 1)), we also have de � 1 (mod p ¡ 1). By little Fermat, it follows that
mde�m (mod p) for all m�/ 0 (mod p). On the other hand, if m� 0 (mod p), then this is obviously true.
Thus, m�mde (mod p) for all m. Likewise, modulo q. �

Example 152. Bob's public RSA key is N = 33, e=3.

(a) Encrypt the message m=4 and send it to Bob.

(b) Determine Bob's secret private key d.

(c) You intercept the message c= 31 from Alice to Bob. Decrypt it using the secret key.

Solution.

(a) The ciphertext is c=me (modN). Here, c� 43= 64� 31 (mod33). Hence, c= 31.

(b) N =3 �11, so that �(N) = 2 �10= 20.
To �nd d, we need to compute e¡1 (mod 20). Since the numbers are so simple we see 3¡1 �
7 (mod20). Hence, d=7.

(c) We need to compute m= cd (modN), that is, m= 317� (¡2)7� 4 (mod33).
That is, m=4 (as we already knew from the �rst part).

Example 153. For his public RSA key, Bob needs to select p; q and e. Which of these must
be chosen randomly?
Solution. The primes p and q must be chosen randomly. Anything that makes these prime more predictable,
makes it easier for an attacker to get her hands on them [in which case, the secret key d is trivial to compute].
On the other hand, e does not need to chosen at random. In fact, the next result shows that knowing any
pair e; d such that ed� 1 (mod (p¡ 1)(q¡ 1)) would allow us to factor N = pq (and thus break).
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