Sketch of Lecture 15 Mon, 2/11/2019

Review. If NV is composite, then a residue a is a Fermat liar modulo N if ¢V ~1=1 (mod N).

Example 89. Somewhat suprisingly, there exist composite numbers n with the following
disturbing property: every residue a is a Fermat liar or gcd(a,n) > 1.
This means that the Fermat primality test is unable to distinguish n from a prime, unless the randomly picked

number a happens to reveal a factor (namely, gcd(a,n)) of n (which is exceedingly unlikely for large numbers).

[Recall that, for large numbers, we do not know how to find factors even if that was our primary goal.]

Such numbers are called absolute pseudoprimes or Carmichael numbers.

The first few are 561, 1105, 1729, 2465, ... (it was only shown in 1994 that there are infinitely many of them).

These are very rare, however: there are 43 absolute pseudoprimes less than 10°. (Versus 78,498 primes.)

Example 90. Show that 561 is an absolute pseudoprime.

Solution. We need to show that a°0 =1 (mod 561) for all invertible residues modulo 561.

Since 561 =3-11-17, a®0 =1 (mod 561) is eqivalent to a®%° =1 (mod p) for all of p=3,11,17.

By Fermat's little theorem, we have a?=1 (mod3), a'*=1 (mod 11), a'=1 (mod 17). Since 2,10, 16 all
divide 560, it follows that indeed a°%° =1 (mod p) for p=3,11,17.

Comment. Korselt's criterion (1899) states that what we just observed in fact characterizes absolute pseudo-
primes. Namely, a composite number n is an absolute pseudoprime if and only if n is square-free, and for all
primes p dividing n, we also have p — 1|n — 1.

Theorem 91. (Korselt’s Criterion) Let n be positive and composite. Then a"=a (modn)
holds for any integer a if and only if n is squarefree and (p — 1)|(n — 1) for any prime divisor
p of n.

i

[if and only if a™ 1 (modn) holds for any integer a with gcd(a,n)=1]

Proof. Here, we will only the “if’ part (the “only if" part is also not hard to show but the typical proof requires
a little more insight into primitive roots than we currently have). In other words, assume that n is squarefree
and (p —1)|(n — 1) for any prime divisor p of n. Let a be any integer. We will show that a” =a (modn).

n being squarefree means that its prime factorization is of the form n = pi-pa---pg for distinct primes p;
(this is equivalent to saying that there is no integer m > 1 such that m?n). By Fermat's little theorem

aPi~! =1 (mod p;) and, since (p; — 1)|(n — 1), a®~! = 1 (mod p;). But, wait! This is only true if
ged(a, pi) =1, that is, a 0 (mod p;). However, in either case (that is, for all a), we get a”™ =a (mod p;).
It then follows by the Chinese remainder theorem that a™ =a (modn). (]
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| The Miller—Rabin primality test

The Fermat primality test picks a and checks whether ¢ 1 =1 (modn).

o If a» 1#1 (modn), then we are done because n is definitely not a prime.

e If a® =1 (modn), then either n is prime or a is a Fermat liar.
But instead of leaving off here, we can dig a little deeper:
Note that (™ ~1)/2 satisfies 22 =1 (modn). If n is prime, then ("~ 1/2 =41 (modn).

[Recall that, if n is composite (and odd), then 22 =1 (modn) has additional solutions!]

o Hence, if a{"~1/2% 41 (modn), then we again know for sure that 7 is not a prime.

Advanced comment. In fact, we can now factor n! See bonus challenge below.

o Ifa"1/2=1 (modn) and * o2 L is divisible by 2, we continue and look at o ~1/* (modn).

— I a(""/%£ 41 (modn), then n is not a prime.

— I a""Y/*=1 (modn) and nzl is divisible by 2, we continue...

Write n — 1 =2%-m with m odd. In conclusion, if n is a prime, then

-
a™=1 or, for some r=0,1,...,s—1, a?*™=-1 (modn).

In other words, if n is a prime, then the values a™, a?™, ...,a? ™ must be of the form 1,1,...,10or ..., —1,1,

1, ..., 1. If the values are of this form even though n is composite, then a is a strong liar modulo n.

This gives rise to the following improved primality test:

Miller—-Rabin primality test

Input: number n and parameter k indicating the number of tests to run
Output: “not prime” or “likely prime”
Algorithm:

Write n — 1 =2%.-m with m odd.
Repeat £k times:
Pick a random number a from {2,3,...,n — 2}.
If a™#1 (modn) and a? ™% —1 (modn) for all r=0,1,...,s — 1, then
stop and output “not prime".
Output “likely prime”.

Comment. If n is composite, then less than a quarter of the values for a could possibly be strong liars. In other
words, for any composite number, the odds that the Miller—Rabin test returns “likely prime” are less than 4k,
Comment. Note that, though it looks more involved, the Miller—Rabin test is essentially as fast as the Fermat
primality test (recall that, to compute a™ ~!, we proceed using binary exponentiation).

Advanced comments. This is usually implemented as a probabilistic test. However, assuming GRH (the
generalized Riemann hypothesis), it becomes a deterministic algorithm if we check a = 2,3, ..., [2(logn)?].
This is mostly of interest for theoretical applications. For instance, this then becomes a polynomial time
algorithm for checking whether a number is prime.

More recently, in 2002, the AKS primality test was devised. This test is polynomial time (without relying on
outstanding conjectures like GRH).
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Example 92. Suppose we want to determine whether n = 221 is a prime. Simulate the
Miller—Rabin primality test for the choices a =24, a =38 and a =47.

Solution. n —1=4-55=2%.-m with s=2 and m = 55.

For a = 24, we compute a™ = 24°° =80 # +1 (mod 221). We continue with a?™ =80%=212# —1,
and conclude that n is not a prime.

Note. We do not actually need to compute that a™ 1= g% =81, which features in the Fermat test
and which would also lead us to conclude that n is not prime.

For a = 38, we compute o™ = 38°° = 64 % +1 (mod 221). We continue with ¢?"* = 64% = 118 # —1
and conclude that n is not a prime.

Note. This case is somewhat different from the previous in that 38 is a Fermat liar. Indeed, a*™ =
1182 = 1 (mod 221). This means that we have found a nontrivial sqareroot of 1. In this case, the

Fermat test would have failed us while the Miller—Rabin test would have succeeded.

For a = 47, we compute o™ = 47°° =174 +1 (mod 221). We continue with a?>" =174?= —1. We
conclude that n is a prime or a is a strong liar. In other words, we are not sure but are (incorrectly)
leaning towards thinking that 221 was a prime.

Comment. In this example, only 4 of the 218 residues 2, 3, ..., 219 are strong liars (namely 21,47, 174, 200).
For comparison, there are 14 Fermat liars (namely 18,21, 38,47, 64, 86, 103, 118, 135, 157,174, 183, 200, 203).

Example 93. (bonus challenge) If ¢~ '=1 (modn) but a("~"/2% +1 (modn), then we
can find a factor of n! How?!

Comment. However, note that this only happens if a is a Fermat liar modulo n, and these are typically very
rare. So, unfortunately, we have not discovered an efficient factorization algorithm.

But we have run into an idea, which is used for some of the best known factorization algorithms. If time
permits, more on that later...

Send in a solution by Feb 24 for a bonus point!
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