
Sketch of Lecture 13 Wed, 2/6/2019

The Blum-Blum-Shub PRG is an example of a PRG, which is believed to be unpredictable.
More precisely, it has been shown that the ability to predict its values is equivalent to being able to e�ciently
solve the quadratic residuosity problem (which is believed to be hard). Currently, the best way to �solve� the
quadratic residuosity problem mod M relies on factoring M . However, factoring large numbers is considered
to be hard (and lots of crypto relies on that).
Quadratic residuosity problem. Given bigM= pq and a residue xmoduloM , decide whether x is a quadratic
residue. (About M /4 are quadratic residues (see above); M /2 are easily determined to be nonsquare using
the Jacobi symbol [don't worry if you haven't heard about that].)

(Blum-Blum-Shub PRG) Let M = pq where p; q are large primes � 3 (mod 4).

From the seed y0, we generate yn+1� yn2 (modM).

The random bits xn we produce are yn (mod 2) (i.e. xn= least bit of(yn)).

BBS is very slow, and mostly of theoretical value. However, it is interesting because it is indeed unpredictable
(to anyone not knowing the factorization of M) if an important number theory problem is �hard� (this can
be made precise), as is believed to be the case.
Why the conditions on p and q? Recall from the CRT that an invertible quadratic residue x2 modulo
M= pq has exactly four squareroots �x, �y. The condition 3 (mod4) guarantees that, of these four, exactly
one is itself a quadratic residue. As a consequence, the mapping y 7! y2 (modM) is 1-1 when restricted to
invertible quadratic residues (see below).
Comment. For obvious reasons, the seed y0 � �1 (mod M) should be excluded. Also, for the above
considerations, the seed needs to be coprime to M . However, we don't need to worry about that: running
into a factor of M by accident is close to impossible (recall that nobody should be able to factor M even on
purposes and with lots of time and resources).
Comment. To increase speed, at the expense of some security, we can also take several, say k, bits of yn
(as long as k is small, say, k6 log2log2M).

Example 80.

(a) List all invertible quadratic residues modulo 21. Compute the square of all these residues.

(b) Repeat the �rst part modulo 33 and modulo 35. When computing the squares of these,
do you notice a di�erence modulo 35?
[Note that 35=5 � 7 with 5� 1 (mod4). This case is excluded in the B-B-S PRG.]

Solution. (�nal answers only)

(a) Among the �(21)= 12 many invertible elements, the squares are 1; 4; 16 (exactly a quarter).
Computing the squares: 12� 1, 42� 16, 162� 4 (mod21). Note that the squares are all di�erent!

(b) Modulo 33: among the �(33)=20many invertible elements, the squares are 1;4;16;25;31�82 (exactly
a quarter). Computing the squares: 12� 1, 42� 16, 162� 25, 252� 31, 312� 4 (mod33). Again, all
the squares are di�erent!
Modulo 35: among the �(35) = 24 many invertible elements, the squares are 1; 4; 9; 11 � 92; 16;
29� 82 (exactly a quarter). Computing the squares: 12 � 1, 42 � 16, 92 � 11, 112 � 16, 162 � 11,
292� 1 (mod35). Observe that these are not all di�erent: for instance, 92� 162 (mod35).

Advanced comment. The map x 7!x2 (mod p) restricted to invertible quadratic residues is 1-1 if and only
if ¡1 is not a quadratic residue (which, by the next result, is equivalent to p� 3 (mod4)).
[Sketch of proof. The map is 1-1 if and only if, for each invertible quadratic residue x2, exactly one of the
two square roots �x is itself a quadratic residue. This is equivalent to ¡1 not being a quadratic residue.
Indeed, if ¡1 is a quadratic residue, then x and ¡x are either both quadratic residues or not.
On the other hand, if not exactly one of �x is a quadratic residue then, because exactly half of the residues
are quadratic, there would be some pair of residues �z which are both quadratic. But then ¡zz¡1 � ¡1
would be a quadratic residue.]

Armin Straub
straub@southalabama.edu

27



Theorem 81. ¡1 is a quadratic residue modulo (an odd prime) p if and only if p�1 (mod4).

In other words, the quadratic congruence x2�¡1 (mod p) has a solution if and only if p� 1 (mod4).

Solution. Let us �rst see that p�1 (mod4) is necessary. Assume x2�¡1 (modp). Then, by Fermat's little
theorem, xp¡1�1 (mod p). On the other hand, xp¡1=(x2)(p¡1)/2� (¡1)(p¡1)/2 (mod p). We therefore
need (¡1)(p¡1)/2=1, which is equivalent to (p¡ 1)/2 being even. Which is equivalent to p� 1 (mod4).
(Make sure that's absolutely clear!)

On the other hand, assume that p � 1 (mod 4). We will show that x =
�
p¡ 1
2

�
! has the property that

x2�¡1 (mod p). Indeed,��
p¡ 1
2

�
!

�
2

=(¡1)(p¡1)/2
�
1 � 2 � ::: � p¡ 1

2

�
2

=(�1) � (�2) � ::: �
�
�p¡ 1

2

�
�¡1 (mod p):

[Here, (�1) � (�2)��� is short for 1 � (¡1) �2 � (¡2)���.] For the �nal congruence, observe that �1;�2; :::;�p¡ 1

2

is a complete set of all nonzero residues. When multiplying all residues, each will cancel with its (modular)
inverse, except the ones that are their own inverse. But a � a� 1 (mod p) has only the solution a��1, so
that �1 are the only residues not canceling.
Comment. The �nal step of our argument is known as Wilson's congruence: (p¡ 1)!�¡1 (mod p).

Theorem 82. (advanced) LetM = pq where p; q are primes � 3 (mod4). Then the sequence
generated by yn+1� yn2 (modM) repeats with period dividing lcm(�(p¡ 1); �(q¡ 1)).
In particular, the period of the corresponding B-B-S PRG divides lcm(�(p¡ 1); �(q ¡ 1)).

Proof.

� Observe that the numbers are yn= yn¡1
2 = yn¡2

4 = :::= y0
2n (modM). Hence, yn� y0

2n (modM).

� Instead of determining the period directly moduloM = pq, we determine the periods modulo p and q.
[Why? By the CRT, ym� yn (modM) if and only if ym� yn (mod p) and ym� yn (mod q).]
The period modulo M then is the lcm of of the two periods modulo p and q.

� ym� yn (mod p)

() y0
2m� y0

2n (mod p)
(= 2m� 2n (mod�(p))

[it would be �()� with 2m� 2n (modk) where k is the order of y0 (mod p)]
() 2m� 2n (mod p¡ 1)

[note that 2 is not invertible (mod p¡ 1); but 2 is invertible
�
mod p¡ 1

2

�
because p� 3 (mod4)]

() 2m¡1� 2n¡1
�
mod p¡ 1

2

�
[note that m;n> 1]

(= m�n
�
mod�

�
p¡ 1
2

��
[again, it would be �()� with m�n (modk) where k is the order of 2

�
mod p¡ 1

2

�
]

� In other words, the period m¡n modulo p divides �
�
p¡ 1
2

�
= �(p¡ 1).

Comment. If p� 3 (mod4), then �
�
p¡ 1
2

�
= �(p¡ 1). Indeed, note that p¡ 1 is divisible by 2 but

not by 4. Hence, 2 and p¡ 1
2

are coprime, so that �(p¡ 1)= �(2)�
�
p¡ 1
2

�
= �

�
p¡ 1
2

�
.

� By the CRT, the period modulo M = pq divides lcm(�(p¡ 1); �(q¡ 1)). �

Example. In Example 79, we had M = 7 � 11, so that the period of the PRG must divide lcm(�(6);
�(10))= lcm(2; 4)=4.
Comment. In practice, people therefore say that, for the cycle length of B-B-S to be large, gcd(�(p ¡ 1);
�(q¡ 1)) should be small.

Armin Straub
straub@southalabama.edu

28



Example 83. We mentioned that the unpredictability of the B-B-S PRG relies on the di�culty
of factoring large numbers. Here's an indication how di�cult it seems to be. In 1991, RSA
Laboratories challenged everyone to factor several numbers including:
1350664108659952233496032162788059699388814756056670275244851438515265\
1060485953383394028715057190944179820728216447155137368041970396419174\
3046496589274256239341020864383202110372958725762358509643110564073501\
5081875106765946292055636855294752135008528794163773285339061097505443\
34999811150056977236890927563

Since then, nobody has been able to factor this 1024 bit number (309 decimal digits). Until
2007, cash prizes were o�ered up to 200,000 USD, with 100,000 USD for the number above.
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

Let us illustrate how to actually use this number in the B-B-S PRG.

Sage] rsa = Integer("135066410865995223349603216278805969938881475605667027524485143851\
526510604859533833940287150571909441798207282164471551373680419703\
964191743046496589274256239341020864383202110372958725762358509643\
110564073501508187510676594629205563685529475213500852879416377328\
533906109750544334999811150056977236890927563")

Sage] seed = randint(2,rsa-2)

Sage] y = seed; prg = []

Sage] for i in [1..25]:
y = power_mod(y, 2, rsa)
prg.append(y % 2)

Sage] prg

[0; 1; 0; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 1; 0; 0; 1; 0; 1; 0; 1]

If you are able, even after a gigabyte of pseudorandom bits, to predict the next bits with an
accuracy better than 50% (which is just pure guessing), then you likely have a shot at factoring
the big integer. You would be the �rst!

Of course, it is not impressive to see a few random bits in the example above. After all, the
seed (which you don't know!) itself consists of 1024 random bits. The whole point is that we
can, from these 1024 random bits, produce gigabytes of further pseudorandom bits. As of this
day, no one would be able to distinguish these from truly random bits.

While all of this works nicely, B-B-S is considered to be too slow for most practical purposes.
Comment. Note that M = 135:::563� 3 (mod 4). Hence it cannot be a product of primes p; q which are
both 3 (mod4).

Example 84. (extra) Generate random bits using the B-B-S PRG with M =209 and seed 10.
What is the period of the generated sequence? (Then repeat with seed 25.)
Solution. (�nal answer only) The seed 10 produces the sequence 0; 1; 0; 1; 1; 1; ::: of period 6.
The seed 25 generates the sequence 1; 0; 0; 1; 1; 0; 1; 0; 0; 0; 1; 1; ::: of period 12.
[By the way, it is an excellent idea to let Sage assist you.]

Armin Straub
straub@southalabama.edu

29


