
Sketch of Lecture 8 Fri, 1/25/2019

Sage

Any serious cryptography involves computations that need to be done by a machine. Let us
see how to use the open-source computer algebra system Sage to do basic computations for us.
Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use
it in the cloud at cocalc.com from any browser.
Sage is built as a Python library, so any Python code is valid. For starters, we will use it as a fancy calculator.

Example 55. Let's start with some basics.

Sage] 17 % 12

5

Sage] (1 + 5) % 2 # don't forget the brackets

0

Sage] inverse_mod(17, 23)

19

Sage] xgcd(17, 23)

(1;¡4; 3)

Sage] -4*17 + 3*23

1

Sage] euler_phi(84)

24

Example 56. Why is the following bad?

Sage] 3^1003 % 101

27

The reason is that this computes 31003 �rst, and then reduces that huge number modulo 101:
Sage] 3^1003

35695912125981779196042292013307897881066394884308000526952849942124372128361032287601\
01447396641767302556399781555972361067577371671671062036425358196474919874574608035466\
17047063989041820507144085408031748926871104815910218235498276622866724603402112436668\
09387969298949770468720050187071564942882735677962417251222021721836167242754312973216\
80102291029227131545307753863985171834477895265551139587894463150442112884933077598746\
0412516173477464286587885568673774760377090940027

We know how to e�ciently avoid computing huge intermediate numbers (binary exponentia-
tion!). Sage does the same if we instead use something like:

Sage] power_mod(3, 1003, 101)

27

Armin Straub
straub@southalabama.edu

17



Review.

� A pseudorandom generator (PRG) takes a seed x0 and produces a stream PRG(x0)=
x1x2 x3 ::: of numbers, which should be close to random numbers.
For cryptographic purposes, these numbers should be indistinguishable from random numbers. Even
for somebody who knows everything about the PRG except the seed. (See Example 54.)

� Once we have a PRG, we can use it as a stream cipher: Using the key k, we encrypt
Ek(m)=m�PRG(k). [Here, the key stream PRG(k) is assumed to be in bits.]

As with the one-time pad, we must never reuse the same keystream!

� To reuse the key, we can use a nonce: Ek(m)=m�PRG((nonce; k)), where the seed
is produced by combining the nonce and k (for instance, just concatenating them).
The nonce is then passed (unencrypted) along with the message.
To never reuse the same keystream, we must never use the same nonce with the same key.

Linear feedback shift registers

Here is another basic idea to generate pseudorandom numbers:

(linear feedback shift register (LFSR) Let ` and c1; c2; :::; c` be chosen parameters.

From the seed (x1; x2; :::; x`), where each xi is one bit, we produce the sequence

xn+`� c1xn+`¡1+ c2xn+`¡2+ :::+ c`xn (mod 2):

This method is particularly easy to implement in hardware (see Example 58), and hence suited for applications
that value speed over security (think, for instance, encrypted television).

Example 57. Which sequence is generated by the LFSR xn+2�xn+1+xn (mod 2), starting
with the seed (x1; x2)= (0; 1)?
Solution. (x1; x2; x3; :::)= (0; 1; 1; 0; 1; 1; :::) has period 3.
Note. Observe that the two previous values determine the state, so there is 22=4 states of the LFSR. The
state (0; 0) is special (it generates the zero sequence (0; 0; 0; 0; :::)), so there is 3 other states. Hence, it is
clear that the generated sequence has to repeat after at most 3 terms.
Comment. Of course, if we don't reduce modulo 2, then the sequence xn+2 = xn+1 + xn generates the
Fibonacci numbers 0; 1; 1; 2; 3; 5; 8; 13; :::

Example 58. Which sequence is generated by the LFSR xn+3�xn+1+xn (mod 2), starting
with the seed (x1; x2; x3)= (0; 0; 1)? What is the period?
[Let us �rst note that the LFSR has 23 = 8 states. Since the state (0; 0; 0) remains zero forever, 7 states
remain. This means that the generated sequence must be periodic, with period at most 7.]

Solution. (x1; x2; x3; :::) = (0; 0; 1; 0; 1; 1; 1; 0; 0; 1; :::) has period 7.
Again, this is not surprising: 3 previous values determine the state, so there
is 23=8 states. The state (0; 0; 0) is special, so there is 7 other states.
Note that this LFSR can be implemented in hardware using three registers
(labeled xn; xn+1; xn+2 in the sketch to the right). During each cycle, the
value of xn is read o� as the next value produced by the LFSR.

xn
xn+1xn+2

+

Note. In the part 0; 0; 1; 0; 1; 1; 1 that repeats, the bit 1 occurs more frequently than 0.
The reason for that is that the special state (0; 0; 0) cannot appear.
For the same reason, the bit 1 will always occur slightly more frequently than 0 in LFSRs. However, this
becomes negligible if the period is huge, like 231¡ 1 in Example 59.

Armin Straub
straub@southalabama.edu

18



Example 59. The recurrence xn+31� xn+28+ xn (mod 2), with a nonzero seed, generates a
sequence that has period 231¡ 1.
Note that this is the maximal possible period: this LFSR has 231 states. Again, the state (0;0; :::;0) is special
(the entire sequence will be zero), so that there is 231¡ 1 other states. This means that the terms must be
periodic with period at most 231¡ 1.
Comment. glibc (the second implementation) essentially uses this LFSR.
Advanced comment. One can show that, if the characteristic polynomial f(T )=x`+c1x`¡1+c2x`¡2+ :::+
c` is irreducible modulo 2, then the period divides 2`¡ 1. Here, f(T )=T 31+T 28+1 is irreducible modulo
2, so that the period divides 231¡1. However, 231¡1 is a prime, so that the period must be exactly 231¡1.

We have seen two simple examples of PRGs so far:

� linear congruential generators xn+1� axn+ b (modm)

� LFSRs xn+`� c1xn+`¡1+ c2xn+`¡2+ :::+ c`xn (mod 2)

Of course, we could also combine LFSRs and linear congruential generators (i.e. look at recur-
rences like for LFSRs but modulo any parameter m).

However, much of the appeal of an LFSR comes from its extremely simple hardware realization, as the sketch
in Example 58 indicates.

Example 60. (extra) One can also consider nonlinear recurrences (it mitigates some issues).
Our book mentions xn+3�xn+2xn+xn+1 (mod 2). Generate some numbers.

Solution. For instance, using the seed 0; 0; 1, we generate 0; 0; 1
seed

; 0; 1; 1; 1; 0; 1; ::: which now repeats (with
period 4) because the state 1; 0; 1 appeared before. Observe that the generated sequences is only what is
called eventually periodic (it is not strictly periodic because 0; 0; 1 never shows up again).

Armin Straub
straub@southalabama.edu

19


