Preparing for Midterm #2

Please print your name:

Problem 1. Consider the function $f(x, y) = \frac{1}{1 + 2x^2 - xy}$.

- (a) What is the natural domain of f(x, y)?
- (b) Compute the partial derivatives f_x and f_{xy} .
- (c) Find the linearization of f(x, y) at (2, 3).
- (d) Compute the gradient ∇f .

(e) Show that f(x, y) is a solution to the partial differential equation $x\frac{\partial f}{\partial x} + (4x - y)\frac{\partial f}{\partial y} = 0.$

- (f) Determine and sketch the level curve f(x, y) = 1.
- (g) Find a vector which is orthogonal to the curve f(x, y) = 1 at the point (1, 2). [Make sure to compare your answer to what you got for the level curve f(x, y) = 1.]
- (h) Find the derivative of f(x, y) at (1, 2) in direction v = 3i + j.
- (i) Find a vector which is orthogonal to the curve f(x, y) = 2 at the point (1/2, 2).
- (j) In which direction does f(x, y) at (1/2, 2) increase most rapidly?
- (k) Find the equation for the plane tangent to the graph of f(x, y) at (1, 2).
- (1) Let w = f(x, y) and x = 2 + t, $y = \cos(t)$. Find $\frac{dw}{dt}$ (in terms of t) in two ways:
 - by expressing w in terms of t and differentiating directly,
 - by using the chain rule.
- (m) Find the local extreme values and saddles of f(x, y).

Problem 2.

- (a) Find all local extreme values and saddle points of the function $f(x, y) = \ln(x + y) + x^2 y$.
- (b) Find all local extreme values and saddle points of the function $f(x, y) = x + 2x^2 + x^3 + xy + y^2$.

Problem 3.

- (a) Let g(x) be a function of one variable such that $g'(x) = e^{x^2}$. Let $w = g(st + e^t)$. Find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$.
- (b) Let f(x, y) be some function of two variables. Write down a chain rule for $\frac{\partial}{\partial w} f(x(u, v, w), y(u, v, w))$.
- (c) Write down a chain rule for $\frac{\partial}{\partial r}f$ and $\frac{\partial}{\partial \theta}f$ for f(x, y) with $x = r \cos\theta$ and $y = r \sin\theta$.
- (d) (Challenge!) Write down a chain rule for $\frac{\partial^2}{\partial r^2} f$ for f(x, y) with $x = r \cos\theta$ and $y = r \sin\theta$.

Problem 4. Consider the function $f(x, y, z) = xyz^2 + 4\sqrt{3 + yz}$.

- (a) Compute the gradient ∇f .
- (b) Find the linearization of f(x, y, z) at (2, 1, 1).
- (c) Find the derivative of f(x, y, z) at (2, 1, 1) in direction v = i + j k.
- (d) Compute the partial derivative f_{zyx} .
- (e) Determine a normal vector for the surface f(x, y, z) = 7 at (-1, 1, 1).
- (f) Find equations for the tangent plane and normal line for the surface f(x, y, z) = 7 at the point (-1, 1, 1).
- (g) Find the line tangent to the curve of intersection of the surfaces $x^2yz = 1$ and f(x, y, z) = 7 at the point (-1, 1, 1).

Problem 5.

(a) Minimize $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraint $g(x, y, z) = x^2 - z^2 - 1 = 0$.

In other words, find the point(s) on (the hyperbolic cylinder) $x^2 - z^2 - 1 = 0$ that are closest to the origin.

(b) Determine a system of equations for finding the extreme values of f(x, y, z) = x - y + 2z on the sphere $x^2 + y^2 + z^2 = 3$.

In this case, it is actually not hard to solve that system. You will find two candidates for extrema. For geometric reasons, one of these has to be a maximum and the other a minimum. (Can you explain why that has to be the case?)

Problem 6. Consider the iterated integral $\int_0^4 \int_{2-x/2}^{\sqrt{4-x}} xy \, dy \, dx$.

- (a) Evaluate the integral.
- (b) Interchange the order of integration.

(If you have time, evaluate that second integral and verify that it gives the same value.)

Problem 7. Consider the region R with $x^2 + y^2 \leq 4$ and $y \geq 0$. Write down an iterated integral for the area of R

- (a) using vertical cross-sections,
- (b) using horizontal cross-sections,
- (c) using polar coordinates.

Problem 8. Convert the cartesian integral $\int_0^2 \int_0^{\sqrt{4-x^2}} \frac{1}{1+x^2+y^2} dy dx$ into an equivalent polar integral.