Review. Is F conservative on a simply connected region D? (In 2D: roughly, a region without "holes".)

- $F(x, y) = \begin{bmatrix} M(x, y) \\ N(x, y) \end{bmatrix}$ is conservative if and only if $M_y = N_x$.
- $F(x, y, z) = \begin{bmatrix} M(x, y, z) \\ N(x, y, z) \\ P(x, y, z) \end{bmatrix}$ is conservative if and only if $M_y = N_x$, $M_z = P_x$, $N_z = P_y$.

Review. Are the vector fields $F = \begin{bmatrix} x \\ y \end{bmatrix}$ and $G = \begin{bmatrix} -y \\ x \end{bmatrix}$ conservative?

Solution. (component test) We check whether $M_y = N_x$.

(a) $M_y = \frac{\partial}{\partial y}x = 0$ and $N_x = \frac{\partial}{\partial x}y = 0$ are equal. Hence, F is conservative on \mathbb{R}^2 (which is simply connected). (b) $M_y = \frac{\partial}{\partial y}(-y) = -1$ and $N_x = \frac{\partial}{\partial x}x = 1$ are not equal. Hence, G is not conservative.

Example 144. Is the vector field $\mathbf{F} = (2x + z)\mathbf{i} - 2yz\mathbf{j} + (x - y^2 + 1)\mathbf{k}$ conservative? If so, determine a potential function.

Solution. We check whether $M_y = N_x$, $M_z = P_x$, $N_z = P_y$. Indeed, $M_y = N_x = 0$, $M_z = P_x = 1$, $N_z = P_y = -2y$ are all equal. Hence, F is conservative on \mathbb{R}^3 (which is simply connected).

To find a potential function, we start with $f_x = 2x + z$ (or one of the other three equations). This implies that $f = x^2 + xz + C(y, z)$. Then, comparing derivatives with respect to y, $f_y = C_y(y, z) = -2yz$ and hence $C(y, z) = -y^2z + D(z)$. So far, we found that $f = x^2 + xz - y^2z + D(z)$. Finally, comparing derivatives with respect to z, $f_z = x - y^2 + D_z(z) = x - y^2 + 1$. Simplified, this is $D_z = 1$, so D = z + E.

In conclusion, we found the potential function $f(x, y, z) = x^2 + xz - y^2z + z$.

[The general potential function is $f(x, y, z) = x^2 + xz - y^2z + z + E$. Just as for ordinary antiderivatives, a constant can be added to any particular potential function to produce all the others.]

Example 145. Consider the vector field $\mathbf{F} = \frac{-y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j}$.

- (a) What is the natural domain of F? Is this set simply connected?
- (b) Compute (do the integral!) $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the unit circle, traversed counterclockwise from (1,0).
- (c) Is the vector field F conservative on its natural domain?
- (d) Is the vector field \mathbf{F} conservative on the region defined by y > 0?
- (e) What is $\int \mathbf{F} \cdot d\mathbf{r}$ if C is the circle of radius 1 around (0,2)?

Solution.

(a) The natural domain is all of the plane \mathbb{R}^2 , with the exception of (0,0). This set is not simply connected because of the "hole" at the origin.

(b) Do it! The final answer is $\int_C \mathbf{F} \cdot d\mathbf{r} = 2\pi$.

- (c) F is not conservative on its natural domain. If it was, then the previous integral would have to be 0. (Why?)
- (d) The region defined by y > 0 is simply connected. Hence, we can use the component test to determine whether F is conservative on this region. Do it! In the end, that F is conservative there.

(e) Note that C is contained in the region defined by y > 0. Since \mathbf{F} is conservative there, $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$. [It would be much more work to compute the integral directly.]

Comment. Since F is conservative on regions excluding (0, 0) without holes, it has a potential function there. Indeed, if x > 0, then F is the gradient field of $f(x, y) = \arctan(y/x)$. Check that! Note that $f(x, y) = \theta$ where θ is the angle used in polar coordinates. (Why?) Can you see how this explains the answer 2π we got in the second part? (In a way, the integral is still f(end) - f(start) but $f(start) = \theta_{start} = 0$ and $f(end) = \theta_{end} = 2\pi$, even though start and end are the same point. f is "multi-valued", something we don't allow for ordinary functions. This is avoided by requiring the region in question to be simply connected.)