
Sketch of Lecture 37 Wed, 3/30/2016

Example 116. Consider the integral
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Sketch the region of integration and write an equivalent double integral with the order of
integration reversed.

Solution. The range for y is 16 y 6 e. The horizontal cross-sections corresponding to y are described by
ln (y)6x6 1.

We thus obtain the equivalent double integral
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Example 117. Consider the region R described by 06 x6 1, x6 y6 1.

(a) Write down an iterated integral for the area.

(b) Write down an iterated integral in polar coordinates for the area.

Solution.
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(b) Make a sketch! Clearly,
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. Now, consider the ray with angle θ (to the x-axis) and think about

the corresponding range for r. Basic trigonometry then shows that 06 r6 cscθ.
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[If you want to compute the integral,

d

dθ
cotθ=−csc2θ is helpful.]

A quick summary of what we learned since last the midterm

We started working with functions f(x, y), g(x, y, z) of several variables:

• partial derivatives

• linearization

• chain rule

• gradient

◦ directional derivative

◦ direction of steepest descent

◦ orthogonal to level curves/surfaces (tangent planes, ...)

• local extrema and saddle points

◦ ∇f =0 and second derivative test

◦ local extrema under constraints: Lagrange multipliers

• multiple integrals

◦ interchange order of integration

◦ polar coordinates (substitution)
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