Sketch of Lecture 12

Example 38. Consider the triangle with vertices P = (1, 1, 1), Q = (2, 1, 3) and R = (3, -1, 1).

(a) Find the area of the triangle.

(b) Find a unit vector perpendicular to the plane PQR.

Solution. See previous lecture sketch!

Lines and planes	
describing lines	describing planes
• through 2 points	• through 3 points
or: 1 point & 1 direction	or: 1 point & 2 directions
(the latter easily translates to parametrizations)	(the latter easily translates to parametrizations)
• by equations	• by equations
5x + 3y = 2 (in 2D)	5x + 3y + 4z = 2 (in 3D)
or two equations in 3D (intersecting two planes!)	• by a parametrization
 by a parametrization 	$\boldsymbol{r}(t) = [\boldsymbol{r}_0] + [\boldsymbol{s}] \boldsymbol{v} + [\boldsymbol{t}] \boldsymbol{w}$
$m{r}(t) = m{r}_0 + m{t}$ $m{v}$ point parameter direction	point param 1 direction 1 param 2 direction 2

Example 39. We are familiar with y = mx + b describing a line in 2D. There is a slight problem though because vertical lines (like x = 2) cannot be written in this form. However, every line in 2D can be written as ax + by = c. For instance, 5x + 3y = 2 (which is the same as 10x + 6y = 4).

Example 40. Moving on to 3D, what is described by the equation 5x + 3y + 4z = 2?

Solution. This is a plane (not a line!) and one way to see why it should be something 2-dimensional (like a plane) is to argue as we did in Lectures 4 and 5: we are working in 3-dimensional space; by specifying 1 equation (here, 5x + 3y + 4z = 2) as constraint, the dimension is reduced to 3 - 1 = 2.

Comment. We can also describe lines in 3D by such equations, but now we need 2 equations (in order to reduce the dimension from 3 to 1)!

Example 41. Find a parametrization for the line through A = (1, 1, 1), B = (2, 1, 3).

Solution. 1 point & 1 direction: we can pick the point A = (1, 1, 1) (*B* works just as well) and $\overrightarrow{AB} = \langle 1, 0, 2 \rangle$. We then get the **parametrization** $P(t) = (1, 1, 1) + t \langle 1, 0, 2 \rangle$, where $t \in (-\infty, \infty)$ is the parameter.

[For any t, P(t) is a point on our line. For instance, P(0) = (1, 1, 1) is A, while P(1) = (2, 1, 3) is B. Slightly more interestingly, P(1/2) = (3/2, 1, 2) is the mid point of A and B. Make sure you can see how we get all points of our line by varying the values of t.]

Example 42. Find a parametrization for the line segment from A = (1, 1, 1) to B = (2, 1, 3). Solution. We can use the parametrization from the previous example: $P(t) = (1, 1, 1) + t \langle 1, 0, 2 \rangle$. However, this time, we restrict t to the values $t \in [0, 1]$. [Why?!]

Example 43. Find a parametrization for the line through B = (2, 1, 3), C = (3, -1, 1).

Solution. Let's pick the point B = (2, 1, 3) and the direction $\overrightarrow{BC} = \langle 1, -2, -2 \rangle$. We then get the parametrization $P(t) = (2, 1, 3) + t \langle 1, -2, -2 \rangle$ with $t \in (-\infty, \infty)$.