Review. dot product and its properties

Example 28. Compute the following:

(a) $\langle 2, -1, 1 \rangle \cdot \langle 1, 0, 3 \rangle$

(b) $(2j - k) \cdot (i + 3k)$

Solution. $\langle 2, -1, 1 \rangle \cdot \langle 1, 0, 3 \rangle = 5$ and $(2j - k) \cdot (i + 3k) = -3$

Example 29. Write $|v - w|^2$ as a dot product, and multiply it out.

Solution. $|v - w|^2 = (v - w) \cdot (v - w) = v \cdot v - v \cdot w - w \cdot v + w \cdot w = |v|^2 - 2v \cdot w + |w|^2$

Comment. This is a vector version of $(x - y)^2 = x^2 - 2xy + y^2$.

The reason we were careful and first wrote $-\boldsymbol{v} \cdot \boldsymbol{w} - \boldsymbol{w} \cdot \boldsymbol{v}$ before simplifying it to $-2\boldsymbol{v} \cdot \boldsymbol{w}$ is that we should not take rules such as $\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{w} \cdot \boldsymbol{v}$ for granted. For instance, for the cross product $\boldsymbol{v} \times \boldsymbol{w}$, that we will soon see, we have $\boldsymbol{v} \times \boldsymbol{w} \neq \boldsymbol{w} \times \boldsymbol{v}$ (instead, $\boldsymbol{v} \times \boldsymbol{w} = -\boldsymbol{w} \times \boldsymbol{v}$).

Two vectors \boldsymbol{v} and \boldsymbol{w} are **orthogonal** if and only if $\boldsymbol{v} \cdot \boldsymbol{w} = 0$.

Why? Short answer: Pythagoras! Long answer: Consider two vectors v and w in standard position, and consider the triangle as in the sketch. The angle between v and w is a right angle if and only if Pythagoras holds in this triangle: $|v|^2 + |w|^2 = |v - w|^2$ (now use the previous example!) $\iff |v|^2 + |w|^2 = |v|^2 - 2v \cdot w + |w|^2$ (next, cancel common terms) $\iff 0 = -2v \cdot w$ $\iff v \cdot w = 0$ Which is what we wanted to show!

Replacing Pythagoras with the law of cosines $(c^2 = a^2 + b^2 - 2ab\cos\theta$ holds in any triangle!), we obtain the following geometric interpretation of the dot product:

 $\boldsymbol{v} \cdot \boldsymbol{w} = |\boldsymbol{v}| |\boldsymbol{w}| \cos \theta$ where $\theta \in [0, \pi]$ is the angle between \boldsymbol{v} and \boldsymbol{w}

What happens in the case w = v? Then, $\theta = 0$ and so...

Solving for θ , we obtain the following useful formula for the angle between two vectors:

The angle between \boldsymbol{v} and \boldsymbol{w} is $\theta = \arccos\left(\frac{\boldsymbol{v} \cdot \boldsymbol{w}}{|\boldsymbol{v}| |\boldsymbol{w}|}\right)$.

Example 30. What is the angle between $\boldsymbol{v} = \langle 1, 1 \rangle$ and $\boldsymbol{w} = \langle 2, 0 \rangle$?

Solution. Make a sketch! From the sketch it is obvious that the angle is $\theta = \frac{\pi}{4}$. Of course, this approach only worked because the vectors were chosen to be so pleasant.

Solution.
$$\theta = \arccos\left(\frac{\boldsymbol{v} \cdot \boldsymbol{w}}{|\boldsymbol{v}| |\boldsymbol{w}|}\right) = \arccos\left(\frac{2}{\sqrt{2} 2}\right) = \arccos\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$$
 $[\boldsymbol{v} \cdot \boldsymbol{w} = 2, |\boldsymbol{v}| = \sqrt{2}, |\boldsymbol{w}| = 2]$

Armin Straub straub@southalabama.edu

