Quiz #10

Please print your name:

Problem 1.

(a) When does
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$$
 converge? Make sure to indicate a reason!
(b) When does $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converge absolutely? Make sure to indicate a reason!

Solution.

- (a) If p > 0, then the series converges by the alternating series test, because $a_n = \frac{1}{n^p}$ is positive, decreasing, and $\lim_{n \to \infty} a_n = 0$. If $p \leq 0$, then $\lim_{n \to \infty} \frac{(-1)^n}{n^p}$ is not zero. Therefore, the series diverges. In summary, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges if and only if p > 0.
- (b) By definition, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges absolutely if and only if $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p}$ converges. Since this is just the usual *p*-series, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges absolutely if and only if p > 1.