Quiz #4

Please print your name:

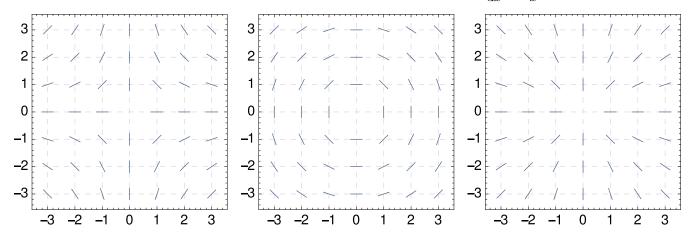
Problem 1. Solve the initial value problem $\frac{dy}{dx} = xy$, y(0) = 7. [Because of the initial condition, you may assume y > 0.]

Solution. We separate variables,

$$\frac{1}{y} \, \mathrm{d}y \,{=}\, x \, \mathrm{d}x$$

and integrate

to find


$$\ln|y| = \frac{1}{2}x^2 + C.$$

 $\int \frac{1}{y} \mathrm{d}y = \int x \mathrm{d}x$

Plugging in y = 7 and x = 0, we find $C = \ln(7)$. Since y > 0, we exponentiate to find

$$y(x) = e^{x^2/2 + \ln(7)} = 7e^{x^2/2}.$$

Problem 2. (Bonus) For a small bonus, select the slope field which belongs to $\frac{dy}{dx} = -\frac{y}{x}$.

Solution. The first slope field belongs to $\frac{dy}{dx} = -\frac{y}{x}$. [The second corresponds to $\frac{dy}{dx} = -\frac{x}{y}$, and the third to $\frac{dy}{dx} = \frac{y}{x}$.]