Midterm #2

Please print your name:

Problem 1. Using the integral test, determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ converges.

Problem 2. Determine the following limits.

(a)
$$\lim_{n \to \infty} \frac{5^n + 3^n}{4^n - 1} =$$

(b)
$$\lim_{n \to \infty} \frac{7n^2 - 8n}{2n^2 + 3} =$$

(c)
$$\lim_{n \to \infty} \sqrt{\frac{3 + 2n^2}{1 + n + n^2}} =$$

(d)
$$\lim_{n \to \infty} \cos\left(\frac{n}{n^2 + 1}\right) =$$

Armin Straub straub@southalabama.edu Problem 3. Write down the geometric series. Under which condition does it converge, and what does it converge to?

	=	provided that:
geometric series	what it converges to	condition for convergence
Problem 4. Under which condition does $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge?		
Problem 5. Determine whether the following series converge or diverge. Make sure to indicate a reason!		
	series converges	series diverges
I	ndicate a reason:	
(a) $\sum_{n=2}^{\infty} \frac{1 - \log(n)}{1 + \log(n)}$		

Armin Straub straub@southalabama.edu **Problem 6.** Consider the power series $\sum_{n=1}^{\infty} \frac{n}{5^n} (x+1)^n$

(a) Determine the radius of convergence R.

(b) Let
$$f(x) = \sum_{n=1}^{\infty} \frac{n}{5^n} (x+1)^n$$
 for x such that $|x+1| < R$. Write down a series for $f'(x)$.

Problem 7. For which values of x does $\sum_{n=1}^{\infty} \frac{x^n+1}{2^n}$ converge? Evaluate the series (as a function of x) for these values.

Problem 8. (Bonus!) What is the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$?

[We don't have the tools to evaluate this series, but you might remember from class.]