Please print your name:

Problem 1. Go over all the quizzes!

To help you with that, there is a version of each quiz posted on our course website without solutions (of course, there's solutions, too).

Problem 2. Determine the following limits.

- (a) $\lim_{n \to \infty} \frac{1 + \log(n)}{1 + n^{3/2}}$
- (b) $\lim_{n \to \infty} \frac{5^n + 3^n}{4^n 1}$
- (c) $\lim_{n \to \infty} \left(1 \frac{1}{2n} \right)^n$

Problem 3. Suppose that $\lim_{n \to \infty} a_n = L$.

- (a) Determine: $\lim_{n \to \infty} a_n^2$
- (b) Determine: $\lim_{n \to \infty} a_{n^2}$
- (c) Suppose further that $a_{n+1} = 2 \frac{a_n}{3}$. What is L?

Problem 4. Determine whether the following series converge.

(a)
$$\sum_{n=1}^{\infty} \frac{7\sqrt{n} + \log(n)}{n^2 + 4}$$

(b)
$$\sum_{n=2}^{\infty} \frac{\sqrt{n}}{10\log(n)}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n-4}{n^2 + \log(n)}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-4)^n}{7n^2 + 1}$$

Problem 5. Using the integral test, determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n (\log n)^{3/2}}$ converges.

Problem 6. For which values of x does $\sum_{n=2}^{\infty} \frac{(-1)^n x^n + 1}{3^n}$ converge?

Evaluate the series (as a function of x) for these values.

Problem 7. Determine the radius of convergence of the following power series.

(a)
$$\sum_{n=2}^{\infty} \frac{n!(x+1)^n}{10^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n3^n}$$

(c)
$$\sum_{n=0}^{\infty} {\binom{2n}{n}} x^n$$

Recall that ${\binom{2n}{n}} = \frac{(2n)!}{n!n!}$

Problem 8.

- (a) Integrate both sides of $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. By choosing the appropriate constant of integration, find a power series for $\log(1-x)$.
- (b) What is the radius of convergence of this power series?
- (c) Does the power series converge for x = 1? On the other hand, it turns out that it does converge for x = -1. Write down the first few terms of the series in the case x = -1.