Sketch of Lecture 54

Parametric curves

Example 213. The unit circle is described by the cartesian equation $x^2 + y^2 = 1$ (in polar coordinates, the equation would be r = 1). Instead of such coordinate equations, we can also describe the same curve by **parametrizing** it: $x = \cos\theta$, $y = \sin\theta$ with parameter $\theta \in [0, 2\pi]$.

Note. A curve can be parametrized in many ways. For instance, x = t, $y = \sqrt{1 - t^2}$ with $t \in [-1, 1]$ is another parametrization of the upper half-circle.

Remark. Note the difference in philosophies behind describing curves: an equation like $x^2 + y^2 = 1$ is more "exclusionary" because we start with all points (x, y) and then restrict to those with $x^2 + y^2 = 1$. On the other hand, $x = \cos\theta$, $y = \sin\theta$ with $\theta \in [0, 2\pi]$ is more "inclusionary" because we are listing only precisely the points on the curve.

Example 214. Find the slope of the line tangent to the curve $x = \cos\theta$, $y = \sin\theta$ at the point corresponding to $\theta = \frac{\pi}{4}$.

Solution. Obviously, the answer is that the slope is -1. But let us go through a possible computation using the parametrization (because, of course, we cannot "see" the answer in more complicated cases).

Solution. The tangent line has slope $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\cos\theta}{-\sin\theta}$, which for $\theta = \frac{\pi}{4}$ is $\frac{\cos\frac{\pi}{4}}{-\sin\frac{\pi}{4}} = -1$.

Note. Of course, we can also work from the other descriptions of the circle (such as $x^2 + y^2 = 1$). Do it!

We can work with parametric curves similarly to what we have been doing. For instance:

The parametric curve x = f(t), y = g(t) with $t \in [a, b]$ has arc length $L = \int_{a}^{b} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^{2} + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^{2}} \,\mathrm{d}t = \int_{a}^{b} \sqrt{(f'(t))^{2} + (g'(t))^{2}} \,\mathrm{d}t.$

Note that $\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \,\mathrm{d}t = \sqrt{(\mathrm{d}x)^2 + (\mathrm{d}y)^2}$ equals $\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \,\mathrm{d}x = \sqrt{(\mathrm{d}x)^2 + (\mathrm{d}y)^2}$ from earlier.

Example 215. Using the parametric curve $x = r \cos\theta$, $y = r \sin\theta$ with parameter $\theta \in [0, 2\pi]$, find the circumference of a circle of radius r.

Solution.
$$L = \int_0^{2\pi} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \,\mathrm{d}t = \int_0^{2\pi} \sqrt{r^2 \sin^2\theta + r^2 \cos^2\theta} \,\mathrm{d}t = \int_0^{2\pi} r \,\mathrm{d}t = 2\pi r$$

Example 216. What is the difference between the parametric curves

$$x = \cos\theta$$
, $y = \sin\theta$ with $\theta \in [0, 2\pi]$ and $x = \cos(2\pi\theta)$, $y = \sin(2\pi\theta)$ with $\theta \in [0, 1]$?

Solution. It is the same curve (unit circle around the origin). Only the parametrization differs: in the second case, we "go through" the circle at 2π times the speed compared to the first case.

Example 217. Describe the parametric curve given by $x = t^2$, y = t + 1 with $t \ge 0$. Solution. If $x = t^2$, then $t = \sqrt{x}$, and so the curve is given by the cartesian equation $y = \sqrt{x} + 1$.

Note. In general, eliminating the parameter, as we did here, may be very difficult or impossible.