Polar coordinates

The **polar coordinates** (r, θ) represent the point $(x, y) = r(\cos \theta, \sin \theta)$.

Often, θ is taken from $[0, 2\pi)$ (but $(-\pi, \pi]$ is another popular choice), and, usually, $r \ge 0$.

Example 208. Which point (in cartesian coordinates) has polar coordinates r = 2, $\theta = \frac{\pi}{6}$? Solution. $(x, y) = r(\cos \theta, \sin \theta) = 2(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}) = (\sqrt{3}, 1)$

[Draw a right triangle with angle $\frac{\pi}{6} = 30^{\circ}$ to find $\sin \frac{\pi}{6} = \frac{1}{2}$ and $\cos \frac{\pi}{6} = \sqrt{1^2 - \left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2}$.]

Note. The polar coordinates r = 2, $\theta = \frac{\pi}{6} + 2\pi$ correspond to the same point $(\sqrt{3}, 1)$. Polar coordinates are not quite unique.

Note. Sometimes, we permit negative r. For instance, the polar coordinates r = -2, $\theta = \frac{\pi}{6} + \pi$ also describe the point $(\sqrt{3}, 1)$.

How to calculate the polar coordinates (r, θ) for (x, y)? By Pythagoras, $r = \sqrt{x^2 + y^2}$, and the angle is $\theta = \operatorname{atan2}(y, x) \in (-\pi, \pi]$.

The function atan2 is available in most programming languages (C, C++, PHP, Java, ...) and is a version of $\arctan(x)$ (or atan in those languages). Note that $\frac{y}{x} = \frac{r \sin \theta}{r \cos \theta} = \tan(\theta)$. If our point is in the first or fourth quadrant, then $\theta = \arctan(\frac{y}{x}) \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Otherwise, $\theta = \arctan(\frac{y}{x}) + \pi$ (see next example).

Example 209. Find the polar coordinates, with $r \ge 0$ and $\theta \in [0, 2\pi)$ of (5, 5) and (-5, -5). Solution. The polar coordinates of (5, 5) are $r = 2\sqrt{5}$ and $\theta = \frac{\pi}{4}$. The polar coordinates of (-5, -5) are $r = 2\sqrt{5}$ and $\theta = \frac{\pi}{4} + \pi = \frac{5\pi}{4}$.

Note. (5,5) is in the first quadrant and $\theta = \arctan\left(\frac{y}{x}\right) = \arctan(1) = \frac{\pi}{4}$. On the other hand, (-5,-5) is in the third quadrant, and so $\theta = \arctan\left(\frac{y}{x}\right) + \pi = \arctan(1) + \pi = \frac{5\pi}{4}$. [atan2 allows us to avoid this distinction.]

Example 210. Describe a circle around the origin with radius 3 using cartesian and polar coordinates.

Solution. Using cartesian coordinates, the circle is described by $x^2 + y^2 = 3^2$. Using polar coordinates, the circle is described by the even simpler equation r = 3.

Note. In this case, both coordinate equations are easy to see directly. We can, however, convert any equation in cartesian coordinates to polar coordinates by substituting $x = r \cos \theta$ and $y = r \sin \theta$. In our case, we would go from $x^2 + y^2 = 3^2$ to $(r \cos \theta)^2 + (r \sin \theta)^2 = 3^2$, which simplifies to $r^2 = 9$ or r = 3 (if we work with $r \ge 0$).

Example 211. Which shape is described by $1 \le r \le 3$, $0 \le \theta \le \frac{\pi}{4}$?

Solution. The inequality $1 \le r \le 3$ describes an annulus (shaped like a CD: a disk with a hole). The inequality $0 \le \theta \le \frac{\pi}{4}$ describes a cone.

Now, put these two together...

Example 212. Describe the *y*-axis using polar coordinates.

Solution. $\theta = \pm \frac{\pi}{2}$

Armin Straub straub@southalabama.edu