Sketch of Lecture 52

Example 201. Find a trig identity for sin(2x).

Solution. We will use $e^{2ix} = (e^{ix})^2$ to find such a trig identity. Observe that

$$e^{2ix} = \cos(2x) + i\sin(2x)$$

$$e^{ix}e^{iy} = [\cos(x) + i\sin(x)]^2 = \cos^2(x) - \sin^2(x) + 2i\cos(x)\sin(x).$$

Comparing imaginary parts, we conclude that $\sin(2x) = 2\cos(x)\sin(x)$. [Note that this is just the important special case x = y of our final example from last time.]

Example 202. Which trig identity hides behind $e^{ix}e^{-ix} = 1$? Solution. Note that

$$e^{ix} e^{-ix} = [\cos(x) + i\sin(x)][\cos(-x) + i\sin(-x)] = [\cos(x) + i\sin(x)][\cos(x) - i\sin(x)]$$

= $\cos^2 x + \sin^2 x$.

Hence, $e^{ix} e^{-ix} = 1$ translates into Pythagoras' identity $\cos^2 x + \sin^2 x = 1$.

The hyperbolic cosine and sine are $\cosh(x) = \frac{e^x + e^{-x}}{2}$ and $\sinh(x) = \frac{e^x - e^{-x}}{2}$. The remaining hyperbolic trigonometric functions are built from these two as expected. For instance, $\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$.

Example 203. Verify that $\cosh'(x) = \sinh(x)$ and $\sinh'(x) = \cosh(x)$.

Example 204. Determine the Taylor series for the hyperbolic cosine $\cosh(x)$ at x = 0.

Solution. Using $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ and $\cosh(x) = \frac{e^x + e^{-x}}{2}$, we find that

$$\cosh\left(x\right) = \frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!} = \sum_{n=0}^{\infty} \left(\frac{1}{2} + \frac{1}{2}(-1)^{n}\right) \frac{x^{n}}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

[In the last step, we used that $\frac{1}{2} + \frac{1}{2}(-1)^n = \begin{cases} 1, & \text{if } n \text{ is even,} \\ 0, & \text{if } n \text{ is odd,} \end{cases}$ to simplify the sum.]

Solution. Alternatively, we can proceeded from scratch: the derivatives of $f(x) = \cosh(x)$ cycle through $\cosh(x), \sinh(x), \cosh(x), \sinh(x), \ldots$ In particular, $f^{(2n)}(0) = 1$ and $f^{(2n+1)}(0) = 0$. Therefore, the Taylor series of $f(x) = \cosh(x)$ at x = 0 is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{f^{(2n)}(0)}{(2n)!} x^{2n} = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n}$$

Example 205. Observe that $\cosh(x) = \cos(ix)$.

Solution. Do it! Replace x with ix in the Taylor series $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$.

Remark 206. It follows right from the definition that $e^x = \cosh(x) + \sinh(x)$.

This is a "cheap" version of Euler's identity $e^{ix} = \cos(x) + i\sin(x)$.

In both cases, e^x and e^{ix} are broken up into their even part and odd part.

Definition 207. The polar coordinates (r, θ) represent the point $(x, y) = r(\cos \theta, \sin \theta)$.

Armin Straub straub@southalabama.edu