Sketch of Lecture 51

Review 197. Taylor series, $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$

Note. The series for e^x and $\cos x$ converge for all x (radius of convergence ∞).

Note. $\cos x$ is an even function, and so its Taylor series only includes the even terms x^{2n} .

Example 198. Determine the Taylor series of $f(x) = \sin(x)$ at x = 0.

Solution. Integrate $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$ to find $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} + C$. Clearly, C = 0. (Why?)

Solution. Differentiate $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$ to find $-\sin x = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)!} x^{2n-1} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} x^{2n+1}$. [In the last step, we replaced n in the summation with n+1: note that $\sum_{n=1}^{\infty} a_n = \sum_{n=0}^{\infty} a_{n+1}$.] We again conclude that $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$.

Solution. The derivatives of f(x) cycle through $\sin(x), \cos(x), -\sin(x), -\cos(x), \dots$ In particular, the values $f^{(n)}(0)$ cycle through $0, 1, 0, -1, \dots$ That is, $f^{(2n)}(0) = 0$ and $f^{(2n+1)}(0) = (-1)^n$. Therefore, the Taylor series of $f(x) = \sin(x)$ at x = 0 is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{f^{(2n+1)}(0)}{(2n+1)!} x^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.$$

Theorem 199. (Euler's identity) $e^{ix} = \cos(x) + i\sin(x)$

In particular, with $x = \pi$, we get $e^{\pi i} = -1$ Why?

$$e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!} = 1 + ix - \frac{x^2}{2} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} + \dots$$

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots$$

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

More formally, $e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!} = \sum_{n=0}^{\infty} \frac{(ix)^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(ix)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}.$

Example 200. Which trig identity hides behind $e^{i(x+y)} = e^{ix}e^{iy}$?

Solution. We observe that

$$e^{i(x+y)} = \cos(x+y) + i\sin(x+y) e^{ix}e^{iy} = [\cos(x) + i\sin(x)][\cos(y) + i\sin(y)] = \cos(x)\cos(y) - \sin(x)\sin(y) + i(\cos(x)\sin(y) + \sin(x)\cos(y))$$

Comparing real and imaginary parts, we conclude that

- $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$ and
- $\sin(x+y) = \cos(x)\sin(y) + \sin(x)\cos(y)$.

Armin Straub straub@southalabama.edu