Example 184. Does the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converge?

Solution. Yes, it converges by the alternating series test: $a_n = \frac{1}{n}$ is positive, decreasing, and $\lim_{n \to \infty} a_n = 0$.

Note. Since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ does not converge absolutely.

Example 185. For which p does the alternating p-series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converge?

Solution. If p > 0, then the series converges by the alternating series test, because $a_n = \frac{1}{n^p}$ is positive, decreasing, and $\lim_{n \to \infty} a_n = 0$. If $p \leq 0$, then $\lim_{n \to \infty} \frac{(-1)^n}{n^p}$ is not zero. Therefore, the series diverges. In summary, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges if and only if p > 0.

Example 186. For which p does the alternating p-series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converge absolutely? **Solution.** By definition, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges absolutely if and only if $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p}$ converges. Since this is just the usual p-series, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges absolutely if and only if p > 1.

Complex numbers

Complex numbers are of the form x + yi, where x and y are real numbers, and i (the **imaginary unit**) is a new kind of number characterized by the property that $i^2 = -1$ (or, $i = \sqrt{-1}$).

The next two examples show that we can add, multiply and divide by complex numbers without the need to introduce further new kinds of numbers.

Example 187. Simplify (1+2i) + (2+3i) and (1+2i)(2+3i). Solution. (1+2i) + (2+3i) = 3+5i and $(1+2i)(2+3i) = 2+3i+4i+6i^2 = -4+7i$

Example 188. Simplify $\frac{1}{3-4i}$. Solution. $\frac{1}{3-4i} = \frac{3+4i}{(3-4i)(3+4i)} = \frac{3+4i}{3^2+4^2} = \frac{3}{25} + \frac{4}{25}i$

In fact, power series allow us to make sense out things like e^{1+2i} , because $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$ is built just from addition and multiplication.

Remark 189. (advanced!) Why does the power series $\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ only converge for $|x| \leq 1$ despite $\arctan(x)$ being differentiable for all x?

[Whereas, for contrast, $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges for all x.]

The answer lies in the fact that $\arctan(x)$ has a problem at x = i (which we don't see if we restrict to real x). This problem is very visible in $\frac{1}{1+x^2}$, which is the derivative of $\arctan(x)$. Since |i| = 1, the power series can have at most radius (!) of convergence 1 (which it does).