Example 178. (yesterday) Determine convergence of $\sum_{n=1}^{\infty} \frac{5^n}{\sqrt{n} 4^n}$ and $\sum_{n=1}^{\infty} \frac{5^n}{n^2 4^n}$.

Solution. Both series $\sum a_n$ diverge because $\lim a_n \neq 0$.

Note. In the first case, limit comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ works to show that the series diverges. However, this comparison is very "wasteful" and doesn't concentrate on the dominating terms. This is illustrated by the fact that limit comparison with $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (which converges) does not yield any conclusions for the second series.

Example 179. Consider the power series $\sum_{n=1}^{\infty} \frac{3^n (x-2)^n}{n}$

- (a) Determine the radius of convergence R.
- (b) Let $f(x) = \sum_{n=1}^{\infty} \frac{3^n (x-2)^n}{n}$ for x such that |x-2| < R. Write down series for f'(x), f''(x)and the indefinite integral $\int f(x) dx$.

Solution.

(a) We apply the ratio test with
$$a_n = \frac{3^n(x-2)^n}{n}$$
.

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{3^{n+1}(x-2)^{n+1}}{n+1} \cdot \frac{n}{3^n(x-2)^n}\right| = 3|x-2|\frac{n}{n+1} \to 3|x-2| \text{ as } n \to \infty$$
The ratio test implies that $\sum_{n=1}^{\infty} \frac{3^n(x-2)^n}{n}$ converges if $3|x-2| < 1$ or, equivalently, $|x-2| < \frac{1}{3}$.
The radius of convergence therefore is $\frac{1}{3}$.
(b) $f'(x) = \sum_{n=1}^{\infty} \frac{3^n}{n} n(x-2)^{n-1} = \sum_{n=1}^{\infty} 3^n(x-2)^{n-1}$
 $f''(x) = \sum_{n=1}^{\infty} 3^n(n-1)(x-2)^{n-2} = \sum_{n=2}^{\infty} 3^n(n-1)(x-2)^{n-2}$
 $\int f(x) dx = \sum_{n=1}^{\infty} \frac{3^n}{n} \frac{(x-2)^{n+1}}{n+1} + C$

Example 180. Evaluate $\sum_{n=1}^{\infty} 3^n (x-2)^{n-1}$ (from the previous problem) if $|x-2| < \frac{1}{3}$.

Solution. This is a geometric series. Here are two ways to rewrite it so we can apply $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. ∞

•
$$\sum_{n=1}^{\infty} 3^n (x-2)^{n-1} = 3 \sum_{n=1}^{\infty} 3^{n-1} (x-2)^{n-1} = 3 \sum_{n=0}^{\infty} 3^n (x-2)^n = 3 \cdot \frac{1}{1-3(x-2)} = \frac{3}{7-3x}$$

•
$$\sum_{n=1}^{\infty} 3^n (x-2)^{n-1} = \frac{1}{x-2} \sum_{n=1}^{\infty} 3^n (x-2)^n = \frac{1}{x-2} \left[\frac{1}{1-3(x-2)} - 1 \right] = \frac{3}{7-3x}$$

Armin Straub straub@southalabama.edu

n=1