Review. power series, radius of convergence, term-by-term differentiation and integration

Review. Determine the derivative of
$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
.

Solution. We have previously determined that this power series about x = 0 has convergence radius $R = \infty$. Therefore, the function f(x) is defined by the series for all $x \in \mathbb{R}$.

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{\infty} \frac{x^n}{n!} = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} \frac{x^n}{n!} = f(x)$$

Important note. Observe that f'(x) = f(x) and f(0) = 1. In other words, f(x) is the unique solution of the IVP y' = y, y(0) = 1. We conclude that $f(x) = e^x$.

Note. Take the derivative of the first few terms of $f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots$ to observe how the series reproduces itself when differentiated.

Note. If one continues this line of thinking, then one actually finds a powerful method for solving differential equations by finding power series solutions.

Example 175. Differentiate both sides of $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.

Solution. We find $\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$. This identity is valid if |x| < 1 (why?).

Comment. If we prefer, we can also write $\sum_{n=1}^{\infty} nx^{n-1} = \sum_{n=0}^{\infty} (n+1)x^n$. Note. The new series $\sum_{n=1}^{\infty} nx^{n-1}$ has again radius of convergence 1 (like the geometric series).

This is a general phenomenon. Differentiating and integrating power series does not change the radius of convergence.

[You can see this by thinking about the effect of an additional factor of n in a_n when applying the ratio test.]

Example 176. Evaluate the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$ and $\sum_{n=1}^{\infty} \frac{n}{2^n}$.

Solution. The first series is just a geometric series: $\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{1-\frac{1}{2}} - 1 = 1$

[also recall our geometric argument from when we started to learn about series]

For the second series, we use
$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$$
 with $x = \frac{1}{2}$. In that case, $\sum_{n=1}^{\infty} \frac{n}{2^{n-1}} = \frac{1}{\left(1-\frac{1}{2}\right)^2} = 4$.
Multiplying both sides by $\frac{1}{2}$, we obtain $\sum_{n=1}^{\infty} \frac{n}{2^n} = 2$.

Example 177. Find a power series (about x=0) for $\frac{1}{1+x^2}$.

[Our goal for next class is to integrate this power series to get our hands on $\arctan(x)$.]

Solution. We plug
$$-x^2$$
 for x in the geometric series $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ to get $\sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n} = \frac{1}{1+x^2}$. This is valid for $|-x^2| < 1$ or, equivalently, $|x| < 1$

In particular, this power series has radius of convergence 1.

Armin Straub straub@southalabama.edu