Review. power series, radius of convergence

Example 170. Determine for which x the following series converge. Evaluate these series under this condition (they are geometric). What is their radius of convergence?

(a) $\sum_{n=0}^{\infty} 3^n x^n$ This is a power series about x = 0. Solution. $\sum_{n=0}^{\infty} 3^n x^n = \sum_{n=0}^{\infty} (3x)^n$ converges if and only if |3x| < 1 (we know that because it is geometric). Equivalently, the series converges if |x| < 1/3. Therefore, the convergence radius of this power series is 1/3. If |x| < 1/3, then $\sum_{n=0}^{\infty} 3^n x^n = \frac{1}{1-3x}$ (again, because the series is geometric). (b) $\sum_{n=0}^{\infty} \frac{(x-2)^n}{5^n}$ This is a power series about x = 2. Solution. $\sum_{n=0}^{\infty} \frac{(x-2)^n}{5^n} = \sum_{n=0}^{\infty} \left(\frac{x-2}{5}\right)^n$ converges if and only if $\left|\frac{x-2}{5}\right| < 1$. Equivalently, the series converges if |x-2| < 5. [This is the same as saying $x \in (-3,7)$.] Therefore, the convergence radius of this power series is 5.

If
$$|x-2| < 5$$
, then $\sum_{n=0}^{\infty} \frac{(x-2)^n}{5^n} = \frac{1}{1 - \frac{x-2}{5}} = \frac{5}{7-x}$.

Example 171. What is the radius of convergence of the following power series?

(a)
$$\sum_{n=0}^{\infty} n! x^n$$

Solution. We apply the ratio test with $a_n = n!x^n$.

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{(n+1)!x^{n+1}}{n!x^n}\right| = |x|(n+1) \to \infty \text{ as } n \to \infty \text{ (unless } |x|=0\text{)}$$

The ratio test implies that $\sum_{n=1}^{\infty} n!x^n$ diverges if $|x| > 0$. Badius of convergence if

The ratio test implies that $\sum_{n=1}^{\infty} n! x^n$ diverges if |x| > 0. Radius of convergence is 0.

(b)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Solution. Done this before! The ratio test implies that $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges for all x. Radius of convergence is ∞ .