Sketch of Lecture 41 Mon, 11/2/2015

Example 165. Determine whether the following series converge or diverge.
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Solution. We apply the ratio test with a,, = on
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Since 3 < 1, the ratio test implies that g on converges.
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Solution. Note that —3—>00 # 0. Hence, the series diverges.
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Solution. We apply the ratio test with a, =—.
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Since 2 > 1, the ratio test implies that E — diverges.
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Power series

Definition 166. A power series (about x =0) is a series of the form
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More generally, a power series about x = a is a series of the form
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Example 167. Investigate convergence of the following series.
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Solution. Of course, we know that the harmonic series diverges. If we apply the ratio test with a,, = —,
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then |22+l - 41 asn— co. Therefore, the ratio test is useless in this case.
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Solution. We apply the ratio test with a,, =—.
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The ratio test implies that Z % converges if |x| <1 (and diverges if |z]| > 1).
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