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Example 165. Determine whether the following series converge or diverge.
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Solution. We apply the ratio test with an=
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Since
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< 1, the ratio test implies that
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Solution. Note that
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→∞� 0. Hence, the series diverges.

Solution. We apply the ratio test with an=
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.
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Since 2> 1, the ratio test implies that
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diverges.

Power series

Definition 166. A power series (about x=0) is a series of the form
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More generally, a power series about x= a is a series of the form
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Example 167. Investigate convergence of the following series.
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Solution. Of course, we know that the harmonic series diverges. If we apply the ratio test with an=
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,

then
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→ 1 as n→∞. Therefore, the ratio test is useless in this case.
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Solution. We apply the ratio test with an=
xn
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.
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The ratio test implies that
∑

n=1

∞
xn

n
converges if |x|< 1 (and diverges if |x|> 1).
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