Review. geometric series, ratio test

Let us redo Example 153 using the ratio test.

Example 163. Determine whether the series $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges. Solution. In this case $a_n = \frac{1}{n!}$, and so $\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{n!}{(n+1)!}\right| = \frac{1}{n+1} \to 0$ as $n \to \infty$. Since 0 < 1, the ratio test allows us to conclude that $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges.

We now include an additional term in this series.

Example 164. Show that the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges for all x.

[This is a generalization of Example 153 which considered the case x = 1. We will see later that $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$.]

Comment. Note that $\frac{x^n}{n!} \leq x^n$, so that (by direct comparison) our series converges for all x with |x| < 1. As we will see from the ratio test, our series actually converges for many more x (all of them!).

Solution. In this case $a_n = \frac{x^n}{n!}$, and so $\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{x^{n+1}}{(n+1)!}\frac{n!}{x^n}\right| = \frac{|x|}{n+1} \to 0$ as $n \to \infty$.

Since 0 < 1, the ratio test allows us to conclude that $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges for all x.

Important comment. We will see later that $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$. This is the reason why we are so interested in understanding series. They allow us to represent functions that we care about in a new and useful way.

Comment. As a consequence, we see that $\lim_{n\to\infty} \frac{x^n}{n!} = 0$ (for any x). Can you also give a direct argument?

Scary?

$$x^{2} = \underbrace{x + x + \dots + x}_{x \text{ times}} \quad \rightsquigarrow \quad \frac{\mathrm{d}}{\mathrm{d}x}x^{2} = \frac{\mathrm{d}}{\mathrm{d}x}(x + x + \dots + x) \quad \rightsquigarrow \quad 2x = 1 + 1 + \dots + 1 = x \quad \rightsquigarrow \quad 2 = 1$$

[If you are bothered by the "x times", then note that the above can be written as $x^2 = xy$ with y = x. Differentiating both sides, we then have 2x = y or 2x = x, and so 2 = 1.

Can you see where we messed up?]