Sketch of Lecture 35

Review 145. $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges but $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (in both cases, $\lim_{n \to \infty} a_n = 0$).

Example 146. For what values of p does $\int_{1}^{\infty} \frac{dx}{x^{p}}$ converge? Solution. For $p \neq 1$, we have $\int_{1}^{\infty} \frac{dx}{x^{p}} = \left[\frac{1}{-p+1}x^{-p+1}\right]_{1}^{\infty}$.

If p > 1, then $\lim_{x \to \infty} x^{-p+1} = \lim_{x \to \infty} \frac{1}{x^{p-1}} = 0$, and we find that the integral converges. If p < 1, then $\lim_{x \to \infty} x^{-p+1} = \infty$, and we find that the integral diverges. We are missing only the case p = 1: in that case, $\int_{1}^{\infty} \frac{1}{x} dx = \left[\log x\right]_{1}^{\infty}$ diverges because $\lim_{x \to \infty} \log (x) = \infty$. To summarize: $\int_{1}^{\infty} \frac{dx}{x^{p}}$ converges if and only if p > 1.

Example 147. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is called a *p*-series. It converges if and only if p > 1. Why?

Solution. This follows from the integral comparison test, and because $\int_{1}^{\infty} \frac{dx}{x^{p}}$ converges if and only if p > 1.

Remark 148. If
$$p > 1$$
, then $\int_{1}^{\infty} \frac{\mathrm{d}x}{x^p} = \left[\frac{1}{-p+1}x^{-p+1}\right]_{1}^{\infty} = \frac{1}{p-1}$.

However, we cannot evaluate $\sum_{n=1}^{\infty} \frac{1}{n^p}$ in any easy way.

• Comparison with the integral only produces inequalities: for instance, $\sum_{n=1}^{\infty} \frac{1}{n^2} > \int_1^{\infty} \frac{dx}{x^2} = 1.$

[Note that this inequality is worthless because it is obvious that $1 + \frac{1}{4} + \frac{1}{9} + ... > 1$.]

- The values of *p*-series are very mysterious to this day:
 - Euler proved (and became famous for doing so) that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$, ...
 - However, we know almost nothing about the $\sum_{n=1}^{\infty} \frac{1}{n^3}$, $\sum_{n=1}^{\infty} \frac{1}{n^5}$, ...

[To give you an idea how little we know: Apéry became famous for showing in 1978 that $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is not a rational number. We still don't know whether it is π^3 times a rational number. By the way, the curious numbers from Example 122 were fundamental to Apéry's proof.]

Example 149. Determine whether the following series converge or diverge.

(a)
$$\sum_{n=0}^{\infty} \frac{1}{2n+1}$$

Your final answer should be that this series diverges.

(b)
$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1}$$

Your final answer should be that this series converges.