Sketch of Lecture 35 Wed, 10/21/2015

Review 145. Z — converges but Z — diverges (in both cases, lim a,,=0).
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Example 146. For what values of p does / % converge?
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Solution. For p+# 1, we have Tdr_f 1
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If p>1, then lim z Pt!'= lim —— =0, and we find that the integral converges.
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If p<1,then lim z~Pt!=o00, and we find that the integral diverges.
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We are missing only the case p=1: in that case, / —dx= [logaz} diverges because lim log(z)=
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To summarize: / —, converges if and only if p>1.
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Example 147. Z % is called a p-series. It converges if and only if p>1. | Why?
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Solution. This follows from the integral comparison test, and because / er converges if and only if p>1.
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Remark 148. If p>1, then / d_x: #x_p“ :L.
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However, we cannot evaluate Z — In any easy way.
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e Comparison with the integral only produces inequalities: for instance, Z =1.

[Note that this inequality is worthless because it is obvious that 1 + Z + 5 +...> 1.]

e The values of p-series are very mysterious to this day:
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o Euler proved (and became famous for doing so) tha Z — 6'2 = 30"
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o However, we know almost nothing about the i i i i
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[To give you an idea how little we know: Apéry became famous for showing in 1978 that g % is
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not a rational number. We still don’t know whether it is 7> times a rational number. "

By the way, the curious numbers from Example 122 were fundamental to Apéry’s proof.]
Example 149. Determine whether the following series converge or diverge.
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Your final answer should be that this series diverges.
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Your final answer should be that this series converges.
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