Sketch of Lecture 34 Tue, 10/20/2015

Example 141. Determine whether the following series converge or diverge. If possible, deter-
mine their value.
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Solution. This series diverges by Theorem 139 because lim
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Solution. Z = Z <7) + Z <7> . Since ’7‘ <1 and ’7’ < 1, the series converges. Find its value!
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Solutlon. This series diverges. (Why?!)

is not zero (in fact, that limit is c0).

Example 142. The harmonic series Z 1+ ; + ; + i + ... diverges. Why?
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Solution. Note that lim — =0, so we cannot directly use our test for divergence coming out of Theorem 139.
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However, we can combine terms as follows to see the divergence:
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Solution. Here is another way to see that the harmonic series diverges. A quick plot reveals that
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(A similar plot is Figure 9.11 (a) in the book.) But we already know (or can quickly check; do it!) that, in the
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limit M — oo, the integral / —dx diverges. It follows, by comparison, that the harmonic series diverges, too.
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Theorem 143. (Integral comparison test) Suppose that f(z) is a positive, continuous,
decreasing function for z > N. Then:
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In other words, the series and integral both converge or both diverge.
Warning: if they converge, of course, the values of the series and the integral are going to be different!
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Example 144. Show that the series Z = =1+ i + 3) + 1i6 + ... converges.
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Solution. The series E —5 converges if and only if the integral / — dx converges.
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Since / — dz= [ac} =0—(—1)=1, the integral converges, and so the series converges as well.
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