
Sketch of Lecture 34 Tue, 10/20/2015

Example 141. Determine whether the following series converge or diverge. If possible, deter-
mine their value.
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Solution. This series diverges by Theorem 139 because lim
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is not zero (in fact, that limit is ∞).
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∣< 1, the series converges. Find its value!
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Solution. This series diverges. (Why?!)

Example 142. The harmonic series
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Solution. Note that lim
n→∞

1

n
=0, so we cannot directly use our test for divergence coming out of Theorem 139.

However, we can combine terms as follows to see the divergence:
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Solution. Here is another way to see that the harmonic series diverges. A quick plot reveals that
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(A similar plot is Figure 9.11 (a) in the book.) But we already know (or can quickly check; do it!) that, in the

limitM→∞, the integral
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dx diverges. It follows, by comparison, that the harmonic series diverges, too.

Theorem 143. (Integral comparison test) Suppose that f(x) is a positive, continuous,
decreasing function for x>N . Then:

∑

n=N

∞

f(n) converges �

∫

N

∞

f(x)dx converges

In other words, the series and integral both converge or both diverge.

Warning: if they converge, of course, the values of the series and the integral are going to be different!

Example 144. Show that the series
∑

n=1

∞
1

n2
=1+

1

4
+

1

9
+

1

16
+
 converges.

[It is considerably more difficult to show that, in fact,
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Solution. The series
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converges if and only if the integral
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=0− (−1)= 1, the integral converges, and so the series converges as well.
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