Series

Remark 130. A tortoise racing a Greek hero... Zeno's paradox

https://en.wikipedia.org/wiki/Zeno%27s_paradoxes#Achilles_and_the_tortoise

Example 131.
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$$

Solution. Visual!

Solution. Redo this example, once you learn about the geometric series (below).

Example 132. In this example, we evaluate the sum $1 + x + x^2 + ... + x^M$.

- First, we note that $x(1+x+x^2+\ldots+x^M) = x+x^2+\ldots+x^M+x^{M+1}$, and that the result has most terms in common with our original sum.
- Hence, we look at the difference of $1 + x + x^2 + \ldots + x^M$ and $x(1 + x + x^2 + \ldots + x^M)$ to get

$$(1-x)(1+x+x^2+\ldots+x^M) = (1+x+x^2+\ldots+x^M) - (x+x^2+\ldots+x^M+x^{M+1}) = 1-x^{M+1}.$$

• Dividing both sides by 1 - x, we arrive at the **geometric sum**

$$\sum_{n=0}^{M} x^{n} = 1 + x + x^{2} + \ldots + x^{M} = \frac{1 - x^{M+1}}{1 - x}.$$

Taking the limit $M \to \infty$ in the geometric sum, we get: (recall that $\lim_{M \to \infty} x^M = 0$ if |x| < 1)

If
$$|x| < 1$$
, then $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + ... = \frac{1}{1-x}$. (Geometric series)

Example 133. Compute the following series:

(a) $\sum_{n=0}^{\infty} \frac{1}{2^n} =$

The final answer should be 2.

$$(\mathsf{b})\sum_{n=1}^{\infty}\frac{1}{2^n}=$$

Note that $\sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=0}^{\infty} \frac{1}{2^n} - \frac{1}{2^0}$. The final answer should be 1 (which is what our visual proof produced).

(c)
$$\sum_{n=0}^{\infty} \frac{7}{10^n}$$

The final answer should be $\frac{70}{9}$.

(d)
$$\sum_{n=2}^{\infty} \frac{7}{10^n} =$$

The final answer should be $\frac{7}{90}$.

Armin Straub straub@southalabama.edu