Review 125. Indeterminate forms are $\binom{\infty}{\infty}$, $\binom{0}{0}$, $(0 \cdot \infty)$, $(\infty)^{0}$, $(1^{\infty})^{*}(0^{0})^{*}$. By taking log in the last three cases, we can always write these as $(\frac{\infty}{\infty})^{*}$ or $(\frac{0}{0})^{*}$, so that we can again apply L'Hospital.

We can "see" the limits $\lim_{n \to \infty} \frac{3n^2 + 7n - 8}{8n^3 + n + 1} = 0$ or $\lim_{n \to \infty} \frac{3n^2 + 7n - 8}{8n^2 + n + 1} = \frac{3}{8}$.

Of course, we also know how to apply, for instance, L'Hospital to find these limits.

Example 126.
$$\lim_{n \to \infty} \left(\frac{3}{n}\right)^{1/n} =$$
Solution. If
$$\lim_{n \to \infty} \left(\frac{3}{n}\right)^{1/n} = L$$
, then
$$\lim_{n \to \infty} \log\left(\left(\frac{3}{n}\right)^{1/n}\right) = \log(L)$$
. We can compute the latter as
$$\lim_{n \to \infty} \log\left(\left(\frac{3}{n}\right)^{1/n}\right) = \lim_{n \to \infty} \frac{\log\left(\frac{3}{n}\right)}{n} = \lim_{n \to \infty} \frac{\log(3) - \log(n)}{n} \bigcup_{\text{L'Hospital } n \to \infty} \frac{-\frac{1}{n}}{1} = 0.$$

From $\log(L) = 0$ we conclude $L = e^0 = 1$. So, $\lim_{n \to \infty} \left(\frac{3}{n}\right)^{1/n} = 1$.

Example 127. $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$ (for any x)

Solution. Apply log to the sequence, then apply L'Hospital. You should find that $\lim_{n \to \infty} \log\left(\left(1 + \frac{x}{n}\right)^n\right) = x$. Finally, undo the log.

Example 128. What is the limit of the sequence $\sqrt{6}$, $\sqrt{6+\sqrt{6}}$, $\sqrt{6+\sqrt{6}+\sqrt{6}}$, ...?

Solution. This sequence $\{a_n\}$ is defined recursively: $a_1 = \sqrt{6}$ and $a_n = \sqrt{6 + a_{n-1}}$ for $n \ge 2$. Computing the first few terms numerically, it seems that $\lim_{n \to \infty} a_n$ exists and is about 3.

• Suppose that $\lim_{n \to \infty} a_n = L$. Taking the limit of both sides of $a_n = \sqrt{6 + a_{n-1}}$, we get

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt{6 + a_{n-1}} = \sqrt{6 + L}$$

- Writing $L = \sqrt{6+L}$ as $L^2 = 6+L$ and solving this quadratic equation shows that $L = \frac{1 \pm \sqrt{25}}{2}$.
- Since $\frac{1-\sqrt{25}}{2} = -2$ (and our sequence is positive), the limit (if it exists) has to be $L = \frac{1+\sqrt{25}}{2} = 3$.

Example 129. What is the limit of the sequence $\frac{1}{1}$, $\frac{2}{1}$, $\frac{3}{2}$, $\frac{5}{3}$, $\frac{8}{5}$, $\frac{13}{8}$, $\frac{21}{13}$, $\frac{34}{21}$, ...?

Hints. Recall that 1, 1, 2, 3, 5, 8, 13, 21, ... are the Fibonacci numbers $\{F_n\}$.

- They are defined recursively: $F_1 = 1$, $F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$.
- Our sequence are quotients of Fibonacci numbers $\{a_n\}$ with $a_n = \frac{F_{n+1}}{F_n}$.
- Take $F_{n+1} = F_n + F_{n-1}$ and divide both sides by F_n to get the recursive relation $a_n = 1 + \frac{1}{a_{n-1}}$.
- Now, suppose our sequence converges and that $\lim_{n\to\infty} a_n = L$. Proceed as in the previous example and take the limit of both sides of $a_n = 1 + \frac{1}{a_{n-1}}$.
- Once, you have determined the limit, compare it numerically with our sequence. Are the terms indeed approaching the value you found?