Trigonometric substitutions

Example 110. Everybody knows that $\cos^2 x + \sin^2 x = 1$. Divide both sides by $\cos^2 x$ to find $1 + \tan^2 x = \sec^2 x$.

Example 111. $\int \frac{1}{\sqrt{1-x^2}} dx =$

We substitute $x = \sin\theta$ (with $\theta \in [-\pi/2, \pi/2]$ so that $\theta = \arcsin(x)$) because then $1 - x^2 = \cos^2\theta$. Since $dx = \cos\theta d\theta$, we find

$$\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \int \frac{\cos\theta \,\mathrm{d}\theta}{\sqrt{1-\sin^2\theta}} = \int \frac{\cos\theta \,\mathrm{d}\theta}{\sqrt{\cos^2\theta}} = \int 1 \,\mathrm{d}\theta = \theta + C = \arcsin\left(x\right) + C$$

[Note that in order to conclude $\sqrt{\cos^2\theta} = \cos\theta$, we used that $\theta \in [-\pi/2, \pi/2]$ and that $\cos\theta \ge 0$ for these values of θ .]

Example 112. $\int \sqrt{1-x^2} \, \mathrm{d}x =$

We substitute $x = \sin\theta$ (with $\theta \in (-\pi/2, \pi/2)$ so that $\theta = \arcsin(x)$) because then $1 - x^2 = \cos^2\theta$. Since $dx = \cos\theta d\theta$, we find

$$\int \sqrt{1-x^2} \, \mathrm{d}x = \int \cos^2\theta \, \mathrm{d}\theta = \dots \text{by parts} \dots = \frac{\theta + \sin\theta \cos\theta}{2} + C = \frac{\arcsin x + x\sqrt{1-x^2}}{2} + C.$$

Example 113. $\int \frac{1}{1+x^2} dx =$ [We already know the answer but let's see how it comes out of trig substitution!]

We substitute $x = tan\theta$ because then $1 + x^2 = sec^2\theta$. Since dx = ...

if you see	try substituting	because
$a^2 - x^2$ (especially $\sqrt{a^2 - x^2}$)	$x = a\sin\theta$	$a^2 - (a\sin\theta)^2 = a^2\cos^2\theta$
$a^2 + x^2$ (especially $\sqrt{a^2 + x^2}$)	$x = a \tan \theta$	$a^2 + (a \tan \theta)^2 = a^2 \sec^2 \theta = \frac{a^2}{\cos^2 \theta}$
and, somewhat less importantly:		
$x^2 - a^2$ (especially $\sqrt{x^2 - a^2}$)	$x = a \sec \theta$	$(a \sec \theta)^2 - a^2 = a^2 \tan^2 \theta$

Note that (by completing the square and doing a simple linear substitution), you can put any quadratic term $ax^2 + bx + c$ into one of these three cases (for instance, $x^2 + 2x + 3 = (x+1)^2 + 2 = u^2 + 2$ with the simple linear substitution u = x + 1).

This is why trigonometric substitution occurs frequently for certain kind of integrals.

Example 114. $\int \frac{1}{(1+x^2)^2} dx =$

[That's an integral we care about for partial fractions!]

Solution. We substitute $x = tan\theta$ because

[After simplifying, you should find $\int \frac{\mathrm{d}x}{(1+x^2)^2} = \int \cos^2\theta \,\mathrm{d}\theta$. Go on!] Try to simplify your answer so your final antiderivative is $\int \frac{\mathrm{d}x}{(1+x^2)^2} = \frac{1}{2} \Big[\arctan(x) + \frac{x}{1+x^2} \Big] + C$. [Can you see, for instance, why $\sin\theta = \frac{x}{\sqrt{1+x^2}}$? This is simpler than $\sin\theta = \sin(\arctan(x))$, isn't it.]

Armin Straub straub@southalabama.edu