Sketch of Lecture 22

Example 98. Does $\int_{2}^{3} \frac{\mathrm{d}x}{x-2}$ converge? Does $\int_{2}^{3} \frac{\mathrm{d}x}{\sqrt{x-2}}$ converge?

Solution. Final answers: No. Yes.

Example 99. The following is VERY WRONG:

[bad!]
$$\int_{-2}^{2} \frac{\mathrm{d}x}{(x+1)^2} = \left[-\frac{1}{x+1}\right]_{-2}^{2} = -\frac{1}{3} - 1 = -\frac{4}{3}$$
 [bad!]

[Note how even the answer is screaming trouble: we integrated something positive and got a negative value.] What went wrong? The integrand has a problem at x = -1!

To be precise, it has a vertical asymptote at x = -1. Since $\frac{1}{(x+1)^2}$ is not differentiable (not even continuous) at x = -1, we can only use the antiderivative $-\frac{1}{x+1}$ for $x \neq -1$. Since -1 is in the domain of integration [-2, 2], we cannot directly apply the Fundamental Theorem of Calculus to this integral.

Instead, we need to split the integral into two improper integrals and analyze these individually:

$$\int_{-2}^{2} \frac{\mathrm{d}x}{(x+1)^2} = \int_{-2}^{-1} \frac{\mathrm{d}x}{(x+1)^2} + \int_{-1}^{2} \frac{\mathrm{d}x}{(x+1)^2}$$

But $\int_{-2}^{-1} \frac{\mathrm{d}x}{(x+1)^2} = \left[-\frac{1}{x+1}\right]_{-2}^{-1}$ diverges because $\lim_{x \to -1^-} \left(-\frac{1}{x+1}\right) = \infty$. Hence, our original integral diverges.

[Note that, working on the second integral, the limit we encounter is $\lim_{x \to -1^+} \left(-\frac{1}{x+1} \right) = -\infty$. This integral, by itself, also diverges.]

Example 100. $\int \sin(x)\cos(x) dx =$

Solution. Integrating by parts with $f(x) = \sin(x)$, $g'(x) = \cos(x)$, $g(x) = \sin(x)$, we get

$$\int \sin(x)\cos(x) \, \mathrm{d}x = \sin^2(x) - \int \cos(x)\sin(x) \, \mathrm{d}x$$

from which we conclude that $\int \sin(x)\cos(x) dx = \frac{1}{2}\sin^2(x) + C.$

Solution. Substitute $u = \sin(x)$, because $du = \cos(x) dx$, to get

$$\int \sin(x)\cos(x) \, \mathrm{d}x = \int \! u \, \mathrm{d}u = \frac{1}{2}u^2 + C = \frac{1}{2}\sin^2(x) + C.$$

Example 101. $\int \sin^{\lambda}(x)\cos(x) dx =$

(with $\lambda \neq -1$)

Solution. Again, substitute $u = \sin(x)$, because $du = \cos(x) dx$, to get

$$\int \sin^{\lambda}(x)\cos(x) \,\mathrm{d}x = \int u^{\lambda}\mathrm{d}u = \frac{1}{\lambda+1}u^{\lambda+1} + C = \frac{\sin^{\lambda+1}(x)}{\lambda+1} + C.$$

Armin Straub straub@southalabama.edu