Integration and areas

Review 14. How the integral $\int_{a}^{b} f(x) dx$ is constructed from sums $\sum f(x)\Delta x$ (where we are summing over rectangles of width Δx between a and b; roughly at position x their height is roughly f(x)). [Σ is a capital sigma, and just means "sum". Don't worry about it for now. We will see it again later.]

Example 15. $\int_0^{\pi} \sin(x) dx =$ Why is $\int_0^{2\pi} \sin(x) dx = 0$? Explain geometrically in terms of areas.

Substitution

Example 16. $\int x e^{x^2} dx =$ (We substitute $u = x^2$ so that $\frac{du}{dx} = 2x$.)

Example 17. $\int e^{2x} dx =$

Example 18.
$$\int \sin(3x+1) \, \mathrm{d}x =$$

Example 19. $\int \sqrt{5x-1} \, \mathrm{d}x =$