Review of our zoo of functions

polynomials

 x^2 , x^3 , $7x^4 - x + 2$, ...

- rational functions $\frac{1}{x+1}$, $\frac{x^2-2x-3}{x^3+7}$, ...
- power functions $x^2, x^{1/2} = \sqrt{x}, x^{-1/2} = \frac{1}{\sqrt{x}}, \dots$
- exponentials

 2^x , e^x , ...

• logarithms

 $\ln(x) = \log_e(x), \ \log_2(x), \ \dots$

- trigonometric functions $\sin(x), \cos(x), \tan(x) = \frac{\sin(x)}{\cos(x)}, \dots$
- inverse trig functions arcsin(x), arccos(x), arctan(x), ...

Review of derivatives

If y(x) is a function, then its derivative is denoted y'(x) or $\frac{d}{dx}y(x)$ (or, in physics, $\dot{y}(x)$). Recall the interpretation of y'(a) as the slope of the line best approximating the function y(x) at the value x = a.

Example 1. State the product rule, the quotient rule and the chain rule.

Example 2.

(a)
$$\frac{d}{dx} x^3 =$$

(b) $\frac{d}{dx} x^a =$
(c) $\frac{d}{dx} \frac{1}{\sqrt{x}} =$
(d) $\frac{d}{dx} \sin(x) =$
(e) $\frac{d}{dx} \cos(x) =$
(f) $\frac{d}{dx} \sin(x^2 + 1) =$
(g) $\frac{d}{dt} e^{-t} (t^2 - 2t + 2) =$

(*a* is just some number.)