
Homework #12 MATH 126 — Calculus II
Monday, Nov 23

Please print your name:

Problem 1. (9.6.2, 9.6.6) Determine if the following series converge or diverge.

(a)
∑

n=1

∞

(−1)n+1 1

n3/2

(b)
∑

n=1

∞

(−1)n+1 n
2+5

n2+4

Solution.

(a) This series converges absolutely, because
∑

n=1

∞

1

n3/2
is a converging p-series. In particular,

∑

n=1

∞

(−1)n+1 1

n3/2

converges (because absolute convergence implies convergence).

Alternatively, we can argue that this series converges by the alternating series test. (This is just one of the
alternating p-series we discussed in class.) Note that it answers the question, but reveals less information than
our previous argument: we still don’t know if the series converges absolutely or only converges conditionally.

(b) The series diverges because the terms (−1)n+1 n
2+5

n2+4
do not converge to zero. �

Problem 2. (9.7.4, 9.7.14) Find the series’ radius and interval of convergence. For what values of x does the series
converge absolutely, for what values does it converge conditionally?

(a)
∑

n=1

∞

(3x− 2)n

n

(b)
∑

n=1

∞

(x− 1)n

n3 3n

Solution.

(a) We apply the ratio test with an=
(3x− 2)n

n
.

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=

∣

∣

∣

∣

(3x− 2)n+1

n+1
·

n

(3x− 2)n

∣

∣

∣

∣

= |3x− 2|
n

n+1
→|3x− 2| as n→∞

The ratio test implies that
∑

n=1

∞

(3x− 2)n

n
converges for all x such that |3x− 2|< 1 or, equivalently,

∣

∣x−
2

3

∣

∣<
1

3
.

The radius of convergence therefore is
1

3
. We already know that the series converges if

∣

∣x −
2

3

∣

∣ <
1

3
, that is, if

x ∈
( 2

3
−

1

3
,
2

3
+

1

3

)

=
( 1

3
, 1

)

. We also know that the series diverges if
∣

∣x −
2

3

∣

∣ >
1

3
. What we don’t know yet is

whether the series converges at the endpoints of the interval. We still need to think about the cases x=
1

3
and

x=1:

• x = 1: in that case, the series is
∑

n=1

∞

(3 · 1− 2)n

n
=

∑

n=1

∞

1

n
. This is the harmonic series, which we know

diverges.
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• x=
1

3
: in that case, the series is

∑

n=1

∞
(

3 ·
1

3
− 2

)

n

n
=
∑

n=1

∞

(−1)n

n
. This is the alternating harmonic series. It

converges by the alternating series test, but it does not converge absolutely. Hence, for x=
1

3
, our series

converges conditionally.

The exact interval of convergence therefore is
[ 1

3
, 1

)

.

Moreover, we know that the series converges conditionally for x=
1

3
, and it converges absolutely for x∈

( 1

3
, 1

)

.

(Note that the ratio test works with absolute values, so we always get absolute convergence from it.)

(b) We apply the ratio test with an=
(x− 1)n

n3 3n
.

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=

∣

∣

∣

∣

(x− 1)n+1

(n+1)3 3n+1 ·
n3 3n

(x− 1)n

∣

∣

∣

∣

=

∣

∣

∣

∣

x− 1

3

∣

∣

∣

∣

n3

(n+1)3
→

∣

∣

∣

∣

x− 1

3

∣

∣

∣

∣

as n→∞

The ratio test implies that
∑

n=1

∞

(x− 1)n

n3 3n
converges for all x such that

∣

∣

x− 1

3

∣

∣< 1 or, equivalently, |x− 1|< 3.

The radius of convergence therefore is 3. We already know that the series converges if |x − 1| < 3, that is, if
x∈ (1−3,1+3)=(−2,4). We also know that the series diverges if |x−1|>3. What we don’t know yet is whether
the series converges at the endpoints of the interval. We still need to think about the cases x=−2 and x=4:

• x = 4: in that case, the series is
∑

n=1

∞

(4− 1)n

n3 3n
=

∑

n=1

∞

1

n3
. This is a p-series with p = 3, which we know

converges (absolutely, because all the terms are positive).

• x=−2: in that case, the series is
∑

n=1

∞

(−2− 1)n

n3 3n
=
∑

n=1

∞

(−1)n

n3
. This is an alternating p-series. It converges

absolutely because p=3> 1.

The exact interval of convergence therefore is [−2, 4].

Moreover, we know that the series converges absolutelyfor all x∈ [−2, 4]. (Note that the ratio test works with
absolute values, so we always get absolute convergence from it.) �

Problem 3. (9.8.2) Find the Taylor polynomials of orders 0, 1, 2 and 3 generated by f(x)= sinx at x=0.

Solution. Since sin (x)=
∑

n=0

∞

(−1)n

(2n+1)!
x2n+1= x−

x3

3!
+

x5

5!
−
 , the Taylor polynomials of orders 0, 1, 2 and 3 are

0, x, x, x−
x3

6
.

�

Problem 4. (9.9.2) Using substitution, find the Taylor series of e−x/2 at x=0.

Solution. Since ex=
∑

n=0

∞

xn

n!
, it follows that e−x/2=

∑

n=0

∞

(−x/2)n

n!
=

∑

n=0

∞

(−1)n

n!2n
xn. �

Problem 5. Find the first four terms of the Taylor series of ex cos (x) at x=0.

Solution. Since ex=
∑

n=0

∞

xn

n!
and cos x=

∑

n=0

∞

(−1)n

(2n)!
x2n, we have

ex cos (x)=

(

1+ x+
x2

2
+

x3

6
+


)(

1+ 0x−
x2

2
+0x3+


)

=1+ x−
x3

3
+


[The first four terms of a Taylor series at x = 0 are the terms a0 + a1x + a2x
2 + a3x

3. When computing the
product, we therefore only included terms up to x3. If we want to also include terms up to x4, that is, compute
a0+ a1x+ a2x

2+ a3x
3+ a4x

4, then we get

ex cos (x)=

(

1+ x+
x2

2
+

x3

6
+

x4

24
+


)(

1−
x2

2
+

x4

24
+


)

=1+ x−
x3

3
−

x4

6
+
 ] �
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