Homework #11

Please print your name:

Problem 1. (9.7.12) Find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$.

Solution. We apply the ratio test with $a_n = \frac{3^n x^n}{n!}$. $\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{3^{n+1} x^{n+1}}{(n+1)!} \cdot \frac{n!}{3^n x^n}\right| = 3|x| \frac{n!}{(n+1)!} = 3|x| \frac{1}{n+1} \to 0 \text{ as } n \to \infty$

The ratio test implies that $\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$ converges for all x.

The radius of convergence therefore is ∞ .

Problem 2. (9.7.44) Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(x+1)^{2n}}{9^n}$ and, within this interval, evaluate the series as a function of x.

Solution. This series is obtained from the geometric series $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \text{ (if } |x| < 1 \text{) by replacing } x \text{ with } \frac{(x+1)^2}{9}.$ Therefore, $\sum_{n=0}^{\infty} \frac{(x+1)^{2n}}{9^n} = \frac{1}{1-\frac{(x+1)^2}{9}} \text{ provided that } \left|\frac{(x+1)^2}{9}\right| < 1 \text{ or, equivalently, } |x+1| < 3.$

The condition |x+1| < 3 is the same as $x \in (-4, 2)$. The interval of convergence is (-4, 2).