
Homework #11 MATH 126 — Calculus II
Wednesday, Nov 11

Please print your name:

Problem 1. (9.7.12) Find the radius of convergence of the series
∑
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Solution. We apply the ratio test with an=
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.
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The ratio test implies that
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converges for all x.

The radius of convergence therefore is ∞. �

Problem 2. (9.7.44) Find the interval of convergence of the series
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and, within this interval, evaluate

the series as a function of x.

Solution. This series is obtained from the geometric series
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(if |x|< 1) by replacing x with
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< 1 or, equivalently, |x+1|< 3.

The condition |x+1|< 3 is the same as x∈ (−4, 2). The interval of convergence is (−4, 2). �
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