Homework #10

Please print your name:

Problem 1. (9.4.10) Does the series $\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n^2+2}}$ converge or diverge? Solution. $\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n^2+2}}$ diverges. (Limit comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, which diverges). To give the details, let $a_n = \sqrt{\frac{n+1}{n^2+2}}$ and $b_n = \frac{1}{\sqrt{n}}$. Then $\frac{a_n}{b_n} = \sqrt{\frac{n+1}{n^2+2}} \sqrt{n} = \sqrt{\frac{n^2+n}{n^2+2}} \rightarrow 1$ as $n \rightarrow \infty$. Hence, $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges. Since it is a *p*-series with $p = \frac{1}{2} \leq 1$, we know that $\sum_{n=1}^{\infty} b_n$ diverges. Therefore, $\sum_{n=1}^{\infty} a_n$ diverges, too.

Problem 3. (9.5.18) Does the series $\sum_{n=1}^{\infty} n^2 e^{-n}$ converge or diverge?

Solution. $\sum_{n=1}^{\infty} n^2 e^{-n} \text{ converges by the ratio test.}$ Indeed, if $a_n = n^2 e^{-n}$, then $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)^2 e^{-(n+1)}}{n^2 e^{-n}} \right| = \frac{(n+1)^2}{n^2} e^{-1} \to \frac{1}{e} \text{ as } n \to \infty.$ Since $\frac{1}{e} < 1$, the series converges. \Box