Homework #9

Please print your name:

Problem 1. (9.2.24) Express the number $1.\overline{414} = 1.414414414...$ as the ratio of two integers.

$$\textbf{Solution.} \ 1.\overline{414} = 1 + \frac{414}{1000} + \frac{414}{1000^2} + \ldots = 1 + \frac{414}{1000} \sum_{n=0}^{\infty} 1000^{-n} = 1 + \frac{414}{1000} \frac{1}{1 - \frac{1}{1000}} = 1 + \frac{414}{999} = \frac{1413}{999} = \frac{157}{111} \qquad \Box$$

Problem 2. (9.2.56) Does the series $\sum_{n=1}^{\infty} \log \frac{1}{3^n}$ converge?

Solution. Note that $\log \frac{1}{3^n} = -n \log (3) \to -\infty \neq 0$ as $n \to \infty$. Therefore, the series $\sum_{n=1}^{\infty} \log \frac{1}{3^n}$ diverges.

Problem 3. (9.3.6) Use the integral test to determine if the series $\sum_{n=2}^{\infty} \frac{1}{n (\log n)^2}$ converges or diverges.

Solution. By the integral test, the series $\sum_{n=2}^{\infty} \frac{1}{n (\log n)^2}$ converges if and only if the integral $\int_2^{\infty} \frac{\mathrm{d}x}{x (\log x)^2}$ converges.

First, however, we should verify that the integral test indeed applies: the function $\frac{1}{x(\log x)^2}$ is obviously positive and continuous for $x \ge 2$. It is also decreasing, because $x (\log x)^2$ clearly increases.

Upon substituting $u = \log x$, we find that

$$\int_{2}^{\infty} \frac{\mathrm{d}x}{x(\log x)^{2}} = \int_{\log(2)}^{\infty} \frac{\mathrm{d}u}{u^{2}} = \left[-\frac{1}{u}\right]_{\log(2)}^{\infty}$$

is finite because $\lim_{u \to \infty} \left(-\frac{1}{u}\right) = 0$. Therefore, the series $\sum_{n=2}^{\infty} \frac{1}{n (\log n)^{2}}$ converges.
Problem 4. (9.3.38) Does the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ converge?

Solution. $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$ converges if and only if $\int_{1}^{\infty} \frac{x}{x^2+1} dx$ converges.

First, however, we should verify that the integral test indeed applies: the function $\frac{x}{x^2+1}$ is obviously positive and continuous for $x \ge 1$. It is also decreasing, because $\frac{x^2+1}{x} = x + \frac{1}{x}$ is increasing (its derivative is $1 - \frac{1}{x^2}$, which is positive if x > 1) if x > 1).

Substituting $u = x^2 + 1$, we find

is finite because $\lim_{u \to \infty}$

$$\int_{1}^{\infty} \frac{x}{x^{2}+1} \, \mathrm{d}x = \frac{1}{2} \int_{2}^{\infty} \frac{\mathrm{d}u}{u} = [\ln |u|]_{2}^{\infty} = \infty$$

because $\lim_{u\to\infty} \ln |u| = \infty$. Hence $\int_1^\infty \frac{x}{x^2+1} \, \mathrm{d}x$ diverges, and we conclude that $\sum_{n=1}^\infty \frac{n}{n^2+1}$ diverges.

Comment. Note that it is more convenient to show the divergence of this series using the limit comparison test. Do it!

Problem 5. (9.4.6) Use the comparison test to determine if the series $\sum_{n=1}^{\infty} \frac{1}{n3^n}$ converges.

Solution. Note that $n3^n \ge 3^n$ for all $n \ge 1$. Hence, $\sum_{n=1}^{\infty} \frac{1}{n3^n} \le \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{3} \frac{1}{1-\frac{1}{2}} = \frac{1}{2} < \infty$. In particular, our series converges.

Armin Straub straub@southalabama.edu