Worksheet #1

Please print your name:

Problem 1. (warmup)

(a) Express each in the form x^r :

$$\sqrt{x} = \boxed{x^{1/2}}, \quad \frac{1}{x^2} = \boxed{x^{-2}}, \quad x^3 \cdot x^7 = \boxed{x^{10}}, \quad (x^3)^7 = \boxed{x^{21}}, \quad \frac{x^3}{x^7} = \boxed{x^{-4}}$$
(b) The equation $ax^2 + bx + c = 0$ has up to $\boxed{2}$ solutions given by $\boxed{\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}}$
(c) If $f(x) = 2x - \frac{1}{x}$, then $f(3) = \boxed{6 - \frac{1}{3} = \frac{17}{3}}$ and $f\left(\frac{1}{x-1}\right) = \boxed{\frac{2}{x-1} - x + 1}$.

Pro

(a)
$$x^2 - 9 = (x - 3)(x + 3)$$

(b) $3x^2 - 12x - 36 = 3(x - 6)(x + 2)$
(c) $5x^2 + 2x - 1 = 5\left(x + \frac{1 + \sqrt{6}}{5}\right)\left(x + \frac{1 - \sqrt{6}}{5}\right)$

Solution. You can always use the *abc*-formula to factor quadratic polynomials (though you should be able to see the first factorization; and, if you have some practice, you can see the second one as well).

In the third case,
$$x = \frac{-2 \pm \sqrt{4+20}}{10} = \frac{-2 \pm \sqrt{24}}{10} = \frac{-1 \pm \sqrt{6}}{5}$$
.
Hence, $5x^2 + 2x - 1 = 5\left(x - \frac{-1 - \sqrt{6}}{5}\right)\left(x - \frac{-1 + \sqrt{6}}{5}\right)$, which simplifies to the above.

Problem 3. Find the intercepts.

(a) $2x + 3y = 12$	The x -intercepts are	(6, 0)	, and the y -intercepts are	(0,4)
(b) $y = 7$	The x -intercepts are	none	, and the y -intercepts are	(0,7) .
(c) $y = 2x^2 - 3x + 1$	The <i>x</i> -intercepts are	$(1,0), (\frac{1}{2},0)$, and the y -intercepts are	(0,1)

Solution.

(a) For the y-intercept we set x = 0 and solve for y: 0 + 3y = 12 implies y = 4. For the x-intercept we set y = 0 and solve for x: 2x + 0 = 12 implies x = 6.

(b) For the y-intercept we set x = 0 and solve for y: y = 7 implies y = 7. For the x-intercept we set y = 0 and solve for x: 0 = 7 has no solution. **Important note.** y = 7 is a horizontal line. There was no need for any computation.

(c) For the y-intercept we set x = 0 and solve for $y: y = 2 \cdot 0^2 - 3 \cdot 0 + 1$ implies y = 1.

For the x-intercept we set
$$y=0$$
 and solve for $x: 0=2x^2-3x+1$ implies $x=\frac{3\pm\sqrt{9-8}}{4}=\frac{1}{2}, 1.$