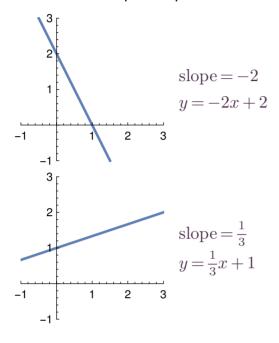
Check out the dancing ghosts again!

Cute as they are...a few of them need to seriously work on their moves:

- -2^x dances as if he was 2^{-x}
- $-\sqrt{x}$ dances as if he was $\sqrt{-x}$
- $\dot{x=0}$ dances as if he was $\dot{y=0}$

Estimate the slopes! Equations?

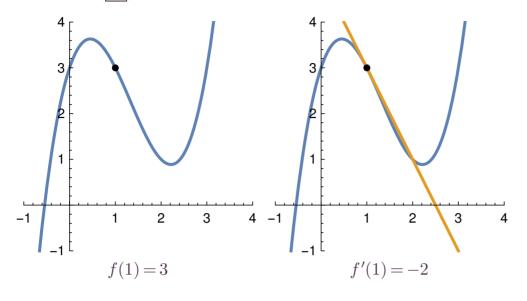


by chibipandora @ deviantART

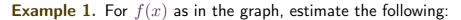
1 The derivative

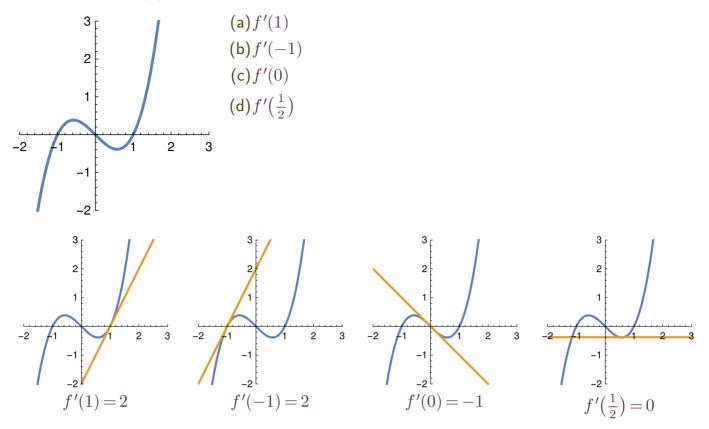
At, say, x = 1 there is a **tangent line** approximating f(x).

We write f'(1) for the slope of this tangent line.



f'(x) is called the derivative of $f(x)$.	
Another common notation: $\frac{d}{dx}f(x) = f'(x)$)





Example 2. Find an equation for the tangent line at x = 1.

Solution. Line has slope f'(1) = 2 and goes through (1, 0).

Hence, an equation is y - 0 = 2(x - 1).

[Or, if preferred, y = 2x - 2, the slope-intercept form.]

1.1 Computing derivatives—a trivial case

(obvious) If f(x) = mx + b, then f'(x) = m.

Why? This is a line. At every point, it has slope m.

2 The power rule

(power rule) If $f(x) = x^r$, then $f'(x) = rx^{r-1}$.

Example 3. What is f'(x) in each case?

- (a) $f(x) = x^2$ (b) $f(x) = x^4$ (c) $f(x) = 2^6$ (d) $f(x) = \sqrt{x} = x^{1/2}$ $f'(x) = 2x^1 = 2x$ $f'(x) = 4x^3$ $f'(x) = 4x^3$ f'(x) = 0 (this is a horizontal line: f(x) = 64) $f'(x) = \sqrt{x} = x^{1/2}$ $f'(x) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$
- (e) $f(x) = \frac{1}{x^2} = x^{-2}$ $f'(x) = -2x^{-3} = -\frac{2}{x^3}$

Example 4. Find an equation for the tangent line to the graph of $f(x) = \frac{1}{x^2}$ at the point $(3, \frac{1}{9})$.

Solution. Since $f'(x) = -\frac{2}{x^3}$, the slope is $f'(3) = -\frac{2}{3^3} = -\frac{2}{27}$.

Line goes through $\left(\boxed{3}, \boxed{\frac{1}{9}} \right)$.

Hence, an equation is $y - \left[\frac{1}{9}\right] = -\frac{2}{27}(x - 3)$.

Optionally, in slope-intercept form: $y = -\frac{2}{27}x + \frac{1}{3}$ [MyLabsPlus should accept any form.]

Play time! Plot f(x) and tangent line using GeoGebra.

https://www.geogebra.org/graphing

Does the tangent line indeed touch the graph of f(x) at the point $\left(3, \frac{1}{9}\right)$?

Homework. Determine the tangent line at x = -1.

Again, plot both f(x) and the tangent line in GeoGebra. [The final answer in slope-intercept form is y = 2x + 3.]

3 Basic rules for differentiation

(constant rule)
$$\frac{d}{dx}[kf(x)] = kf'(x)$$
 if k is a constant
(sum rule) $\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$

Example 5. Let $f(x) = -2x^4$. What is f'(x)?

Solution. The derivative of x^4 is $4x^3$.

By the constant rule, $f'(x) = -2 \cdot 4x^3 = -8x^3$.

Example 6. Let $f(x) = -2x^4 + 3x^5$. What is f'(x)?

Solution. The derivative of $-2x^4$ is $-8x^3$.

The derivative of $3x^5$ is $15x^4$.

By the sum rule, $f'(x) = -8x^3 + 15x^4$.